
MARCH/APRIL 2016

ENUMS 40 | JPA CRITERIA 45 | GOLO LANGUAGE 54

ORACLE.COM/JAVAMAGAZINE

INSIDE THE
JVM’S CODE
CACHE

24
HOW JAVA
COLLECTIONS
BECAME LAZY

28
PROCESSING
ANNOTATIONS

35
G1 AND
SHENANDOAH:
THE NEW GARBAGE
COLLECTORS

20
UNDERSTANDING
WHAT THE JIT IS
DOING

14

 Inside Java
and the JVM

http://www.oracle.com/javamagazine

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

01

//table of contents /

COVER ART BY I-HUA CHEN

03
From the Editor
Greater type inference and reduced
ceremony—a new JDK proposal from the
Java team

06
Letters to the Editor
Comments, questions, suggestions,
and kudos

09
Events
Upcoming Java conferences and events

11
Java Books
Review of Spring Boot in Action

40
New to Java
Making the Most of Enums
By Michael Kölling
Anytime you have a set of known
constant values, enums are a
type-safe representation that
prevents common problems.

45
Enterprise Java
What’s New in JPA:
The Criteria API
By Josh Juneau
Create queries and update databases
with Java entity classes and fields,
rather than with strings of SQL.

54
JVM Languages
Golo
By Julien Ponge
A fast, low-ceremony, easy-to-learn
language for the JVM

63
Fix This
By Simon Roberts
Our latest code challenges

19
User Groups
Bulgarian Java User Group

39
Oracle Cloud Services
for Java Developers
A quick overview of three Oracle cloud
services of interest to Java developers

67
Java Proposals of Interest
JEP 283 and JEP 263: Migrating
to GTK+ 3 on Linux

68
Contact Us
Have a comment? Suggestion?
Want to submit an article proposal?
Here’s how.

14
WHAT IS THE
JIT COMPILER
ACTUALLY DOING?
By Andrew Dinn and Andrew Haley

How the JIT transforms your code

20
THE NEW
GARBAGE
COLLECTORS
IN OPENJDK
By Christine H. Flood

An overview of the
G1 and Shenandoah
garbage collectors

24
UNDERSTANDING
THE JAVA
HOTSPOT VM
CODE CACHE
By Ben Evans

Learn to detect
and mitigate a full
code cache.

28
FOR FASTER JAVA
COLLECTIONS,
MAKE THEM
LAZY
By Mike Duigou

How adding lazy
operations to ArrayList
and HashMap improved
performance and
reduced memory usage

35
ANNOTATIONS:
AN INSIDE LOOK
By Cédric Beust

How annotations
work, how best to
use them, and how
to write your own

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

02

EDITORIAL
Editor in Chief
Andrew Binstock
Managing Editor
Claire Breen
Copy Editors
Karen Perkins, Jim Donahue
Section Development
Michelle Kovac
Technical Reviewer
Stephen Chin

DESIGN
Senior Creative Director
Francisco G Delgadillo
Design Director
Richard Merchán
Senior Designer
Arianna Pucherelli
Designer
Jaime Ferrand
Senior Production Manager
Sheila Brennan
Production Designer
Kathy Cygnarowicz

PUBLISHING
Publisher
Jennifer Hamilton +1.650.506.3794
Associate Publisher and Audience
Development Director
Karin Kinnear +1.650.506.1985
Audience Development Manager
Jennifer Kurtz

ADVERTISING SALES
Tom Cometa tom.cometa@oracle.com
Advertising Sales Assistant
Cindy Elhaj +1.626.396.9400 x 201
Mailing-List Rentals
Contact your sales representative.

RESOURCES
Oracle Products
+1.800.367.8674 (US/Canada)
Oracle Services
+1.888.283.0591 (US)

ARTICLE SUBMISSION
If you are interested in submitting an article, please email the editors.

SUBSCRIPTION INFORMATION
Subscriptions are complimentary for qualified individuals who complete the
subscription form.

MAGAZINE CUSTOMER SERVICE
java@halldata.com Phone +1.847.763.9635

PRIVACY
Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer
that your mailing address or email address not be included in this program, contact
Customer Service.

Copyright © 2016, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise
reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY
DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY
DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. Opinions
expressed by authors, editors, and interviewees—even if they are Oracle employees—do not necessarily reflect the views of Oracle.
The information is intended to outline our general product direction. It is intended for information purposes only, and may not
be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied
upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s
products remains at the sole discretion of Oracle. Oracle and Java are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly at no cost to qualified subscribers by
Oracle, 500 Oracle Parkway, MS OPL-3A, Redwood City, CA 94065-1600.

ATMs, Smartcards, POS Terminals, Blu-ray Players,

Set Top Boxes, Multifunction Printers, PCs, Servers,

Routers, Switches, Parking Meters, Smart Meters,

Lottery Systems, Airplane Systems, IoT Gateways,

Programmable Logic Controllers, Optical Sensors,

Wireless M2M Modules, Access Control Systems,

Medical Devices, Building Controls, Automobiles…

#1 Development Platform

7 Billion
Devices Run Java

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:jennifer.hamilton%40oracle.com?subject=
mailto:karin.kinnear%40oracle.com?subject=
mailto:jennifer.s.kurtz%40oracle.com?subject=
mailto:tom.cometa%40oracle.com?subject=
mailto:cindy%40sprocketmedia.com?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle-sub.halldata.com/site/ORA000263JFnew/init.do?&PK=NAFORJ
mailto:java%40halldata.com?subject=
mailto:java%40halldata.com?subject=
https://www.oracle.com/java/index.html

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

03

//from the editor /

JVM languages can be divided into two broad
categories: those that aim to improve on Java’s

design (Groovy, Kotlin, Scala, Golo, Gosu, and so
on) and those that are ports of other languages
to the Java platform (JRuby, Jython, Fortress, and
others). In the former group, three enhancements
are almost universal: concision, closures, and
simple ways of specifying immutability. It would
be tempting (although not completely accurate) to
restate these three differentiators as a quest for
brevity, but the more precise way to say it would
be that they are all part of a quest for simplicity.

In this regard, the last two releases of Java have
seen important changes that move the language
toward this goal of reduced clutter. In particu-
lar, the advent of lambdas and the introduction
of streams in Java 8 shrank the amount of code

PHOTOGRAPH BY BOB ADLER/GETTY IMAGES

Greater Type Inference and Brevity
May Be Coming to Java
A proposal for new reserved words will cut boilerplate code.

previously necessary to communicate straight-
forward operations.

However, those changes did not fully attack the
much-assailed wordiness of the language. This
loquaciousness is most visible and annoying in
type declarations:

HaydnSymphony surprise =
 new HaydnSymphony();

It’s clear in this example that the compiler knows
the type of the declared item, so it’s rather point-
less to type it twice. And in enterprise applica-
tions (where the naming problem is particularly
acute), variables can have lengthy names, which
make not only writing but reading code tiring and
error-prone. To address the question of brevity,

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://martinfowler.com/bliki/TwoHardThings.html
http://oracle.com/java

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

04

//from the editor /
the problem of redundant
type declarations needed to
be resolved.

A new JDK Enhancement
Proposal, JEP 286, proposes to do
just this for local variables. While
several approaches are consid-
ered, the one actually proposed
puts forth a new reserved word,
var, which stands in for the
redundant boilerplate. The previ-
ous code would now look some-
what shorter:

var surprise =
 new HaydnSymphony();

It’s important to note that var
is just a reserved word here,
not some declaration of a new
dynamic type. It simply states
that the type, which remains
static, can be inferred by the
compiler on the right-hand side
of the declaration.

By wisely relegating this fea-
ture to local variables, the JEP
authors made sure the actual data
type is never far from where the
variable is used, so downstream
maintenance programmers will
find it easy to know exactly what
the data type is. This aspect is
important so that var does not
accidentally make it difficult to
understand or debug code.

Had the JEP proposed only this,
it would be a welcome step for-
ward. But it goes even further
and entertains the possibility of a
second keyword that would allow
similar declaration syntax for
immutable objects. If Java were to
use the scheme for variables and
values found in Scala, the second
keyword would be val (for value).
It would look like this:

val normalTemp = 98.6;

Because the compiler can tell
that the initial value is a floating-
point constant, it can easily infer
the correct data type.

The proposed type inference
of var extends the type infer-
ence previously delivered in Java
5, 7, and 8; whereas the use of
val is principally a replacement
for final. In fact, Java already
has a second keyword, const,
which is currently reserved but
unused, that could be employed
for the same purpose. In a world
of abstractions, the idea of a third
reserved term for the same con-
cept might seem preposterous,
but I like the pragmatism of a
short, elegant term as an immu-
table alternative to var. This
similarity makes the language
feel cohesive (compared with the

more inchoate feel of C++).
The use of var and its possible

pairing with val strongly appeal
to me, but the JEP document
explores other possible combi-
nations. One of the suggested
objections to val and var is
that the similarity in spelling
can lead to confusion, although
I am not persuaded that this is a
true problem. Of the complaints
that Scala developers have about
the language’s syntax, confu-
sion between these terms is not
among them.

Adding new reserved words to
an established language is serious
business. Especially with short
words, it’s likely that the addi-
tions will cause disruptions in
existing code. So additions should
be made only when they address
a compelling need. I believe that
the brevity and simplicity these
terms will bring to Java warrant
this step, and I would love to see
adoption of this proposal.

Let me know if you agree.

Andrew Binstock, Editor in Chief
javamag_us@oracle.com

@platypusguy

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://openjdk.java.net/jeps/286
mailto:javamag_us%40oracle.com?subject=
https://twitter.com/platypusguy
http://oracle.com/java

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

06

//letters to the editor /
How Groovy Found Its Groove
Thank you for mentioning
Groovy’s surge in popularity in
your editorial, “The Rise and Fall
of Languages in 2015” (January/
February 2016, page 3). You attrib-
uted the recent success to perfor-
mance. And indeed Groovy has
moved from a dynamic Java com-
panion to an efficient general-
purpose language, with static type
checking for refined type safety,
and static compilation for Java
speed and efficiency. So Groovy
can be applied to any kind of pro-
gramming activity.

This has led it to be more widely
adopted in new use cases. For
example, Groovy now has Android
support, so you can use it for
developing mobile apps.

Gradle, the popular build auto-
mation solution, uses Groovy as
its build language, which makes
Gradle more advanced and more
flexible than other build prod-
ucts. Google adopted Gradle for
building Android applications. So
lots of Android developers—
even those just using Java for

their projects—are now also
using Groovy, at least through
Gradle, and so are being exposed
and becoming familiar with
the language.

Finally, I should note that
Groovy is now part of the Apache
Software Foundation and no
longer directed by a commer-
cial company. As a result of this
change, other projects in the
Apache Foundation are already
using or integrating Groovy into
their offerings.

—Guillaume Laforge
Project lead of the Groovy

programming language

Elixir for Quirky Syntax
Thanks for your discussion of
the various languages in your
editorial, “The Rise and Fall
of Languages in 2015.” Even
though you don’t mention it, I’d
be curious to get your thoughts
on Elixir.

—Alan Andrade

Editor Andrew Binstock: Elixir is a
new language that runs on top of

Erlang on the Erlang virtual machine
(called BEAM). It has been champi-
oned by Dave Thomas, whose early
promotion of Ruby via his writings
made that language popular. Erlang,
a functional language with a quirky
syntax, is designed for writing dis-
tributed applications that are fault
tolerant. Elixir makes that Erlang
syntax more approachable, while
providing the same fault tolerance,
due to running on BEAM and rely-
ing on the Erlang ecosystem. While I
expect that Elixir will stay confined
to the traditional niche that Erlang
serves, I would not be surprised to
see it overtake Erlang in popularity.

Testing Spring
Thank you for your informa-
tive article on Spring Boot (“First
Steps with Spring Boot,” January/
February 2016, page 15). I had
difficulty getting the test code
on pages 20 and 21 to work.
Ultimately, though, I was able
to find the solution, which was
to add the import statements in
Listing 1 to the test code.

—Dave Brooks

JANUARY/FEBRUARY 2016

import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.content;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;

Listing 1.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/JanFeb2016?token=B4G0MXJGXDW5T9N8

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

07

//letters to the editor /

Jython Correction
I believe there are two minor errors
in the Jython code examples in
“Jython 2.7: Integrating Python and
Java” (November/December 2015,
page 42). In Listing 9, the fifth line
should refer to range2 rather than
range1:

sum(get_nums(spreadsheet,
 range2)))

And in Listing 10, the range of spread-
sheet cells being tested should not
include H5:

assert_crosstab(main_sheet,
 "A5:G5", "H1:H4")

—Mihoko Suzuki
[Mihoko Suzuki heads up

translation of Java Magazine
into Japanese. —Ed.]

Contact Us
We welcome comments, suggestions,
grumbles, kudos, article proposals, and
chocolate chip cookies. All but the last
two might be edited for publication.
If your note is private, indicate this in
your message. Write to us at javamag_
us@oracle.com. For other ways to reach
us, including information on contacting
customer service for your subscription,
see the last page of this issue.

Learn More

Learn Java 8
From the Source
Oracle University

 New Java SE 8 training and certification

 Available online or in the classroom

 Taught by Oracle experts

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/technetwork/jp/articles/java/overview/index.html
mailto:javamag_us%40oracle.com?subject=
mailto:javamag_us%40oracle.com?subject=
http://education.oracle.com/pls/web_prod-plq-dad/ou_product_category.getFamilyPage?p_family_id=48&p_mode=Training&sc=WWOU15043959MPP001C002

https://www.jetbrains.com/idea/specials/idea/idea.html?utm_source=javamagazine&utm_medium=banner&utm_content=capable-and-ergonomic&utm_campaign=idea

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

09

//events /

PHOTOGRAPH BY TOMMIE HANSEN/FLICKR

Devoxx France APRIL 20–22
PARIS, FRANCE
Inaugurated by the Paris Java User Group
in 2012 and open to all developers, Devoxx
France will take place at the Palais des
Congrès this year, with an estimated 2,500
participants and 220 presentations. The
first day will be devoted to hands-on labs
and three intensive tools-in-action pre-
sentations. The remaining days will fol-
low the familiar regional Devoxx format
featuring multiple miniconferences and
small-group workshops. Keynote topics
this year focus on computers in society.

Riga Dev Day
MARCH 2–4
RIGA, LATVIA
This event is a joint project by
Google Developer Group Riga,
Java User Group Latvia, and
Oracle User Group Latvia. By
and for software developers,
Riga Dev Day focuses on 25 of
the most relevant topics and
technologies for that audi-
ence. Tracks include JVM and
web development, databases,
DevOps, and case studies.

EclipseCon
MARCH 7–10
RESTON, VIRGINIA
EclipseCon is all about com-
munity. Contributors, adopters,
extenders, service providers,
consumers, and business and
research organizations gather
to share their expertise and
learn from each other. Topics
this year include an introduc-
tion to the Eclipse Che next-
generation Java IDE, hawkBit
and software updates for the
Internet of Things (IoT), faster
index for Java, and Java 9 sup-
port in Eclipse.

O’Reilly Fluent Conference
MARCH 7–10
SAN FRANCISCO, CALIFORNIA
Fluent offers practical train-
ing in JavaScript, HTML5, CSS,
and the latest web develop-
ment technologies and frame-
works. Topics include WebGL,
CSS3, mobile APIs, Node.js,
AngularJS, ECMAScript 6,
and more. The conference is
designed to appeal to applica-
tion, web, mobile, and inter-
active developers, as well as
engineers, architects, and
UI/UX designers.

QCon London
MARCH 7–9, CONFERENCE
MARCH 10–11, WORKSHOPS
LONDON, ENGLAND
QCon is designed for technical
team leads, architects, engi-
neering directors, and project
managers who influence inno-
vation in their teams. Topics
include what to expect in Java 9
and Spring 5, containers in
production, microservices for
mega-architectures, full-stack
JavaScript, and data science
and machine learning meth-
ods. Two days of workshops
follow the conference.

jDays
MARCH 8–9
GOTHENBURG, SWEDEN
jDays is a Java developer con-
ference covering Java/Java EE,
architecture, security, DevOps,
cloud and microservices, test-
ing, JavaScript, IoT trends,
methodologies, and tools.

JavaLand 2016
MARCH 8–10
BRÜHL, GERMANY
This annual conference is a
gathering of Java enthusiasts,
developers, architects, strate-

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.devoxx.fr
http://rigadevday.lv
https://www.eclipsecon.org/na2016/
http://conferences.oreilly.com/fluent/
http://qconlondon.com
http://www.jdays.se
https://www.javaland.eu/en/javaland-2016/

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

10

//events /

gists, and project administrators.
Session topics for 2016 include
containers and microservices, core
Java and JVM languages, enter-
prise Java and the cloud, front end
and mobile, IDEs and tools, and
the IoT. After lectures on the first
day of the conference, attendees
get exclusive use of Phantasialand
and its rides and attractions.

JAX 2016
APRIL 19–21, CONFERENCE
APRIL 18 AND 22, WORKSHOPS
MAINZ, GERMANY
More than 200 internationally
renowned speakers give practical
and performance-oriented lec-
tures on topics such as Java, Scala,

Android, web technologies, agile
development models, and DevOps.
Workshops are offered the day
preceding and the day following
the conference.

Great Indian Developer Summit
(GIDS)
APRIL 26–30
BANGALORE AND PUNE, INDIA
The conference begins in
Bangalore on April 26 through 29
and wraps up with an inten-
sive one-day session in Pune on
April 30. Tracks this year will
focus on .NET and cloud develop-
ment, web and mobile technolo-
gies, Java and dynamic languages,
and data and analytics.

GeeCON 2016
MAY 11–13
KRAKOW, POLAND
GeeCON is a conference focused
on Java and JVM-based tech-
nologies, with special attention
to dynamic languages such as
Groovy and Ruby. The event cov-
ers topics such as software devel-
opment methodologies, enterprise
architectures, software crafts-
manship, design patterns, distrib-
uted computing, and more.

JEEConf 2016
MAY 20–21
KIEV, UKRAINE
JEEConf is the largest Java con-
ference in Eastern Europe. The
annual conference focuses on
Java technologies for application
development. This year offers five
tracks and 45 speakers on modern
approaches in the development of
distributed, highly loaded, scal-
able enterprise systems with Java,
among other topics.

jPrime
MAY 26–27
SOFIA, BULGARIA
jPrime is a relatively new confer-
ence with talks on Java, various
languages on the JVM, mobile,

web, and best practices. This
second edition will be held in the
Sofia Event Center, run by the
Bulgarian Java User Group, and
backed by the biggest companies
in the city.

IndicThreads
JUNE 3–4
PUNE, INDIA
IndicThreads enters its 10th year
featuring sessions on the latest in
software development techniques
and technologies from the IoT to
big data, Java, web, and more.

Devoxx UK
JUNE 8–10
LONDON, ENGLAND
Devoxx UK focuses on Java, web,
mobile, and JVM languages. The
conference includes more than
100 sessions, with 50-minute
conference sessions, three-
hour hands-on labs, and many
quickie presentations.

Have an upcoming conference
you’d like to add to our listing?
Send us a link and a description
of your event at least four months
in advance at javamag_us@oracle
.com. We’ll include as many as
space permits.

PHOTOGRAPH BY GÜNTER HENTSCHEL/FLICKR

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://jax.de/
http://www.developermarch.com/developersummit/
http://2016.geecon.org
http://jeeconf.com
http://jprime.io
http://pune16.indicthreads.com
http://www.devoxx.co.uk
mailto:javamag_us%40oracle.com?subject=
mailto:javamag_us%40oracle.com?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

11

Spring Boot is the popular
framework for Java enterprise
development. It is based on the
larger Spring Framework, and
it enables developers to put
together apps with less ceremony
and housekeeping than found in
most frameworks. The January/
February issue of Java Magazine,
which covered web develop-
ment, had a feature article that
explained the basics of setting
up and running a Spring Boot
application (“First Steps with
Spring Boot”).

This book, which at 180 pages
plus appendixes is unusually
short for a book in the Manning
“in Action” series, presents an
introduction similar to the arti-
cle and then keeps going with
more elaborate setups, more
advanced configurations, and
practical deployment informa-
tion. The deployment coverage

includes a discussion of pushing
new apps to the cloud (specifi-
cally, Pivotal’s Cloud Foundry
and, in passing, Heroku). The
explanation of the Spring eco-
system and how to use it in
developing apps is approachable
and intelligently presented.

As a starter manual, this book
is satisfactory, but it contains
several frustrating aspects of
which these two in particular
stand out. The first is that the
downloadable source code is
in places significantly differ-
ent from what’s printed in the
book. What, then, is the reader
to do or conclude? The later
code (that online) is presum-
ably more correct, but the text
no longer corresponds directly
to it. A second frustration is
that the topic of microservices
is not mentioned, even though
this is clearly a major direc-

tion for Spring applications.
Finally, I have difficulty with the
author’s penchant for Grails, a
JVM application platform written
in Groovy. While Grails 3.0 apps
are based on Spring Boot, it’s
difficult to imagine that a Grails
user would be turning to this
book for information on Grails;
meanwhile, a Spring Boot user
is unlikely to want information
about programming for a dif-
ferent application framework.
Given the brevity of this book, it
seems that other topics, such as
microservices, would have been
much more helpful.

Where the content is rele-
vant and the code matches the
printed volume, Spring Boot in
Action is useful, well written,
and easy to follow. If it were
not for these limitations, it
could be recommended.
—Andrew Binstock

//java books /
SPRING BOOT IN ACTION
By Craig Walls
Manning Publications

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/JanFeb2016#&pageSet=15&page=0
http://www.javamagazine.mozaicreader.com/JanFeb2016#&pageSet=15&page=0
https://github.com/habuma/sbia-samples
https://www.manning.com/books/spring-boot-in-action

https://zeroturnaround.com/software/xrebel/trial/tshirt/?utm_source=javamag&utm_medium=fullpage_april&utm_campaign=xrebeltshirtpromo

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

13ART BY I-HUA CHEN

 Inside Java
 and the JVM
There is little knowledge in programming

as important to the ideal design and imple-
mentation of software as the understanding
of how exactly code is executed. On the JVM,

this means knowing the machine’s internal opera-
tions and how the Java compiler transforms source
code into executable bytecodes. Quite apart from
their role in better programs, the mechanics of Java
and the JVM are uniquely fascinating. Looking only
at the JVM, can you name one other software tool that
contains not one but two compilers, three memory
reclamation tools, and a specialized performance
analyzer that is itself compiled at runtime?

That’s why we look into the fundamentals of
just-in-time (JIT) compilation in the JVM (page 14),
we compare the performance of different garbage
collectors (page 20), and we update an article on the
JVM’s code cache and its effects on performance
(page 24). To these, we add deep dives into how Java
itself works: how annotations are handled and how
you can write your own annotations (page 35), plus
examining how the Java Collections Framework
was optimized using an unusual technique that is
available to you in your code (page 28).

The rest of the issue (see the Table of Contents)
shows off a new JVM language, better persistence
in Java EE, and how enums work in Java, topped off
by our famous language quiz. Enjoy!

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

14

//inside java /

Most Java developers know that the JVM employs a just-
in-time (JIT) compiler to improve the performance of

Java programs. However, it’s less commonly understood what
a JIT compiler actually does and what benefits it provides. In
this article, we explain how a JIT compiler functions and why
that makes such a difference to performance. We discuss
OpenJDK, the open source JDK release, but everything we say
applies equally well to Oracle’s releases.

Interpretation versus Compilation
Java classes must be compiled to bytecode by the javac
compiler before they can be executed by the JVM. As
explained in a previous article in Java Magazine (“How the
JVM Locates, Loads, and Runs Libraries”), bytecode encodes
the details of classes in a portable, architecture-neutral file
format. However, to execute that bytecode you need a JVM
(the java program) that is built for a specific processor and
operating system.

OpenJDK’s java program provides more than one way
of executing Java methods. Initially they are executed by
an interpreter that implements the stack-based virtual
machine described by The Java Virtual Machine Specification.
That interpreter provides a full implementation of Java.
However, because it uses interpretation, it cannot deliver the
best performance.

At a high level, an interpreter cannot perform many opti-

mizations, such as reordering a computation, in order to
remove or bypass redundant computations. At the low level,
an interpreter cannot make best use of the underlying pro-
cessor instruction set or the caches and the memory system.

In contrast, a JIT compiler can provide improvements at
both these levels. JIT compilers use high-level strategies to
transform bytecode into equivalent operations that have the
same effect but perform far less computation. These opera-
tions are then encoded as low-level, native machine code
using the processor instruction set to best effect while ensur-
ing that useful data is retained as far as possible in proces-
sor registers or caches, minimizing memory system delays.
Also, runtime constants such as cache and heap sizes and
the number of available processors can be taken into account
when generating code.

As an example of how slow interpretation can be, look
at the following program that computes elements of the
Fibonacci series:

x0 = 1
x1 = 1
xn = xn-1 + xn-2 for n > 1

The implementation is in a single Java class:

class Fib
{

What Is the JIT Compiler
Actually Doing?
How the JIT transforms your code

ANDREW DINN AND
ANDREW HALEY

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015?Sub_Id=BLNK00007&pg=31#pg31
http://www.oraclejavamagazine-digital.com/javamagazine/november_december_2015?Sub_Id=BLNK00007&pg=31#pg31
https://docs.oracle.com/javase/specs/jvms/se8/html/

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

15

//inside java /

 public static
 void main(String[] args) {
 int i = Integer.valueOf(args[0]);
 System.out.println(fib(i));
 }

 private static int fib(int i) {
 if (i <= 0) {
 return 0;
 } else if (i == 1) {
 return 1;
 } else {
 return (fib(i - 1) +
 fib(i - 2));
 }
 }
}

You can run this using only the interpreter by passing flag
-Xint to the java command:

$ time java -Xint Fib 48
512559680

real 18m7.649s
user 18m8.074s
sys 0m0.088s

Note that the time command is Linux- and UNIX-specific.
[Microsoft Windows users can use the ptime utility by Jem
Berkes. It is also available in our download area. —Ed.]

A JIT-Generated Bytecode Interpreter
Slow as that might seem, it is worth noting that the OpenJDK
interpreter is faster than most. One reason is that it is imple-
mented using machine code generated by the JIT compiler.
When the JVM starts up, the JIT compiler generates the inter-
preter as small snippets of native machine code, one for each
operation that can appear in bytecode. The interpreter works

on one bytecode operation at a time, jumping to the generated
code for that operation and then executing the next bytecode.

Each JVM thread has a JVM stack that stores frames, one
per method call. Each frame contains a stack known as the
operand stack. (See The Java Virtual Machine Specification for
more details.) Many bytecode operations involve popping one
or more values off the operand stack; computing a result; and,
perhaps, pushing it back on the stack or, alternatively, writing
it as the value of a local variable. The processing step might
require adding two numbers, fetching a value from an input
object’s field, or accessing an array element at some given
index. Such operations are easily translated into one or two
native machine instructions.

Flow-control operations, such as if or while, update the
bytecode pointer, possibly skipping forward to a then or else
branch or backward to a while loop condition test. Calls to
method operations, such as invokevirtual, create a new
frame, using the arguments on the operand stack to populate
a new locals area, while return operations delete a frame and
might push a method result onto the caller’s operand stack.

Generating the interpreter code at startup has important
benefits over writing it in a high-level language such as
C++. The instruction sequences are encoded using a low-
level assembler, which means they can make better use
of the capabilities of the runtime processor than an inter-
preter written in a high-level language. For example, dedi-
cated machine registers can be used to provide fast refer-
ence to commonly used values such as the current Java
thread and frame or the bytecode pointer. You can even
generate interpreters with different features depending on
command-line options.

There are some opportunities for a JITed interpreter to apply
optimizations. For example, some pairs of bytecode instruc-
tions that are frequently seen together can be merged. One
such case occurs when a field of this is loaded. The merger
requires executing two bytecode instructions, aload_0

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.pc-tools.net/win32/ptime/
http://www.pc-tools.net/win32/ptime/
https://bitbucket.org/javamagazine/magdownloads/downloads/Utilities-WindowTimer-ptimer.zip

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

16

//inside java /

followed by getfield. aload_0 reads the object refer-
ence for this from the locals area into a register, which is
always in local slot zero, and then pushes the value onto the
top of the stack. getfield pops an object reference off the
top of the stack back into the same register, loads a value at
some offset from the start address of the object into a sec-
ond register, and then pushes the loaded value onto the top
of the stack. The push and pop in the middle are simply
wasted work. In addition, executing each successive instruc-
tion requires reading two instruction bytes twice and two
jumps to the associated code template for that instruction.
The JVM substitutes a pseudo-instruction fast_agetfield
for the original pair, avoiding the redundant push and pop
operations and requiring only one bytecode read and jump.
Also, some commonly used library calls—for example,
java.lang.ref.Reference.get()—have specially coded
implementations that enable the interpreter to execute
them quickly.

JIT Compilation
To do even better than this optimized interpreter can do, you
need a JIT compiler. Even in a JIT compiler, however, not all
methods are compiled to optimized machine code. The JVM
concentrates on the ones that provide the most benefit.

A JIT compiler must do a lot of work to analyze the byte-
code and generate optimized machine code, even for a simple
method. Extensive testing of Java code from many sources
shows that most methods are only called a very small
number of times—and some not at all! So, there is no point
bothering to compile all of them. The amount of time saved
would be negligible, and the JIT compiler would be better off
focusing its time on code that is called frequently. A good JIT
compiler tries to speed up execution only for hot methods:
that is why the OpenJDK JVM was named HotSpot. It is often
said that 90 percent of the execution time is spent executing
10 percent of the code, so it’s ideal to concentrate the optimi-

zation efforts on that 10 percent.
You can see the HotSpot VM in action as follows:

$ time java -XX:+PrintCompilation Fib 48
 66 1 3 java.lang.String::indexOf (70 bytes)
 67 3 3 java.lang.String::hashCode (55 bytes)
 . . .
 73 10 3 java.lang.String::equals (81 bytes)
 73 11 3 Fib::fib (29 bytes)
 74 12 4 Fib::fib (29 bytes)
 75 11 3 Fib::fib (29 bytes) made not entrant
512559680

real 0m26.866s
user 0m26.861s
sys 0m0.021s

Notice that this compiled code runs more than 50 times faster
than interpreting. (The third column in this log shows the
optimization level, which we describe shortly.)

Note that the method String.indexOf is the first method
to be compiled, even though there is no call to that method in
the program. This is because starting up Java executes code
to set up the runtime environment, and much of it is string
processing. Therefore, the first hot methods are encountered
in class String.

You can see that fib is compiled and then recompiled at
a higher optimization level. The original compiled code is
decommissioned once the new version is in place. So, there
seems to be more than one way to compile a method: in fact,
there is more than one JIT compiler in OpenJDK.

A Choice of JIT Compilers
The performance improvement provided by compilation
comes from executing machine code instead of interpreting
bytecode. However, by itself that doesn’t necessarily make
a big difference. The most significant gains arise from the

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

17

//inside java /

high- and low-level optimizations that the compiler per-
forms when generating machine code.

OpenJDK includes two JIT compilers, often known as the
client and server compilers. Originally you had to pick one
or the other on the java command line (using either the
-client or -server options). In recent JDK releases, the
default configuration is to use them both in what is called
tiered compilation mode. You can see tiered compilation in
action in the previous trace. Method fib is first compiled at
Level 3, that is, using the client compiler but including code to
count method calls and paths taken at branches. fib is then
recompiled at Level 4, which uses the server compiler.

The client JIT compiler was designed for desktop applica-
tions that typically run only for a short time, possibly only
for a few seconds or, perhaps, a few minutes. In contrast, the
server JIT compiler was intended for applications that run for
hours, days, or even months. Both compilers optimize, but
they make very different trade-offs. Essentially, the client JIT
compiler performs less optimization than the server JIT, pro-
ducing slower compiled code but generating it more quickly.

The trade-off is easy to see. For example, in the OpenJDK
source code from the OpenJDK repository, the Java library
source is in the subdirectory jdk/src/share/classes. We
ran javadoc with only the client compiler, as shown below,
where the input file jdkfiles lists all Java source files found
below src/share/classes:

$ time javadoc \
-quiet -J-XX:TieredStopAtLevel=2 @jdkfiles
real 4m41.775s
user 5m31.390s
sys 0m1.862s

Command-line option -J is used to pass an argument to the
underlying JVM. The option -XX:TieredStopAtLevel=2
asks the JVM to execute only at Level 1 (interpreted) or Level 2

(client compiler without profiling).
To run the JVM using only the server compiler, you would

pass the option -XX:-TieredCompilation, which switches
off tiered compilation. It generates these timings:

$ time javadoc \
-quiet -J-XX-TieredCompilation @jdkfiles
real 3m30.083s
user 4m50.410s
sys 0m1.880s

Going to the server compiler has dropped the elapsed time
from 4 minutes and 40 seconds to 3 minutes and 30 sec-
onds, or a reduction of 25 percent. It is interesting to look at
the change in user time, which is the amount of CPU time
used across all of the cores. In the first run, 50 seconds more
CPU time was used than real (elapsed) time. In the second
run, there was 1 minute and 20 seconds of extra CPU time, a
60 percent increase. So, 60 percent more JIT compiler time cut
25 percent off the total execution time.

JIT compilation is done in background threads, normally
on an otherwise idle CPU. So, compilation doesn’t slow down
an application by stealing the CPU. The usefulness of a JIT
compiler depends on two things: the speed of the code it
generates and how fast it delivers that code. Delivery time
is important because execution switches to compiled code
only after
■■ The method is called enough times to be queued for

compilation
■■ The compiler dequeues the method and generates the

compiled code
The server compiler produces faster code, but that faster code
has some catching up to do. Because each server-compiled
method arrives later than the corresponding client-compiled
method, methods that are hot when scheduled for compila-
tion might have gone cold by the time the compiled code is

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

18

//inside java /

generated. The program might even exit before the server
compiler has finished.

Therefore, for a server application, if you have to choose
between the JITs, the server compiler is almost certainly a
better choice than the client compiler. It is well worth sac-
rificing a bit of lost time getting up to speed during server
startup if it ensures that code that runs for weeks is as highly
optimized as possible.

However, OpenJDK provides an even better option that,
for most applications, provides the best of both worlds: the
default tiered compilation configuration we mentioned ear-
lier. Tiered means that hot methods are first compiled using
the client JIT compiler. These client-compiled methods count
how often they are executed, and if they remain hot, they are
recompiled using the server JIT compiler. Tiered compila-
tion gives good startup speed while ensuring that code that
remains hot is fully optimized. It also avoids wasting time
heavily optimizing code that is called a lot at program startup
but then quickly goes cold.

When run with tiered compilation, the javadoc example
doesn’t show much difference compared with the server
compiler numbers:

$ time javadoc \
-quiet -J-XX+TieredCompilation @jdkfiles
real 3m31.275s
user 5m23.726s
sys 0m2.093s

You can see that there is a lot more user time (1 minute 50
seconds) spent on compilation but the elapsed time does not
really improve much. That’s because almost all the code
in the javadoc application that gets client-compiled is
executed frequently enough that it eventually gets server-
compiled. So, the benefit of delivering JITed code earlier is
lost in the overhead of running that slower code for longer.

For most real-life server applications, tiered compilation
rarely costs much and is frequently a much better bet than
plain server compilation, because the applications start up
considerably faster. Tiered compilation also helps interactive
applications, again because they start up quickly and then
get faster as the server compiler does its work. You might
have noticed this effect when running applications such
as NetBeans.

Some Optimizations Are Possible Only with a JIT
You might ask, what is the point of using a JIT compiler when
it adds the overhead of compiling methods at runtime? Why
not just compile all the code in advance to get the best per-
formance, as is done with native languages such as C++? (This
is called ahead-of-time compilation, or AOT.) That would be
possible if all the code were available at compile time but, of
course, Java is a dynamic language that is able to load code
from the classpath or even via the network. If there were no
JIT compiler, dynamically loaded code would need to be inter-
preted, which would be highly unsatisfactory.

However, that is not the only reason for using a JIT com-
piler. The most important benefit of runtime compilation
is that certain optimizations become possible that are not
available to AOT compilers. It is not widely understood or
acknowledged, but the OpenJDK JIT compiler can generate
code for a whole range of programs faster than, say, a C++
compiler can do for an equivalent program.

Conclusion
If you are interested in seeing what the JVM does with
your application code, try running with the following
flags enabled:

java -XX:+PrintCompilation \
 -XX:+UnlockDiagnosticVMOptions \
 -XX:+PrintInlining MyMainClass arg1 … argN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

19

//inside java /

“Introduction to JIT Compilation in Java HotSpot VM”

learn more

These options enable you to observe inlining decisions being
made as your methods are compiled. Over a long enough
time and with a varying data set, you might see your meth-
ods being deoptimized and recompiled as application-phase
changes drive your code down previously cold paths. You
might see increasingly larger inline trees being submitted for
compilation as call counts accumulate from the bottom up.

If you are really adventurous, you can download the
OpenJDK source code and build the disassembler library
(look for the hsdis subdirectory in the hotspot source tree),
allowing you to print the generated native machine code with
the -XX:+PrintAssembly option. You might even build a
debug version of OpenJDK, which provides a host of other
Print and Trace options to expose a lot more information
about what the JIT compiler is doing on your behalf.

It has often been observed that the most successful tech-
nology is invisible: it works so well that you don’t know it’s
there. Almost all of the time, the Java HotSpot VM is like that.
The interpreter, the JIT compilers, the garbage collectors,
and the runtime system all work together so smoothly and
quickly that you don’t notice that they’re there. But some-
times, knowing what is really going on can give you clear
benefits. </article>

Andrew Dinn is a member of Red Hat’s OpenJDK team and also
leads the JBoss project Byteman.

Andrew Haley is technical lead of Red Hat’s Java team. He has
been programming professionally for more than 30 years and
using Java for almost as long as it has existed.

//user groups /

BULGARIAN JAVA
USER GROUP

Bulgaria is a popular spot
for startups and outsourc-
ing. The Bulgarian Java
User Group (JUG) was
founded in September 2007
along with a mailing list for
discussion of Java-related
issues. Five members set
up a leadership board in
2013 and began regular
meetups and sessions once

or twice a month. The JUG took part in Adopt OpenJDK activi-
ties and soon joined the Java Community Process program. As
a member, the JUG pushed for some changes to OpenJDK and
held a few hackathons.

In 2015, the group started organizing a community con-
ference called jPrime, which attracted 400 attendees and 20
sponsoring companies. The conference is considered one of
the major Java events in the region.

The group also started up jProfessionals, a series of free,
one-day miniconferences. The first jProfessionals meeting
was held in November 2015, and the featured speaker was
Kohsuke Kawaguchi, the creator of Jenkins CI.

The Bulgarian JUG organizes regular events with local and
foreign presenters, including Java Champion David Blevins,
who spoke about the TomEE application server. Monthly
events include hands-on labs.

During the summer, when there are no meetups, members
have started weekend code retreats. The topic in 2015 was
developing the JBoss Forge add-on for Spring Boot.

The plan for 2016 is to put on even more events.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://bitbucket.org/javamagazine/magdownloads/downloads/2012-05-IntroToJIT-Evans&Lawrey-articleOnly.pdf
https://jug.bg/en/
https://jug.bg/en/
https://groups.google.com/forum/#!forum/bg-jug
http://jprime.io/

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

20

//inside java /

L ife in the world of OpenJDK garbage collection (GC) is get-
ting exciting. Not only is there a new default JDK 9 gar-

bage collector, called G1, but there is also a new alternative,
Shenandoah, from Red Hat. In this article, I discuss the dif-
ferences between the current parallel collector and G1, and I
examine what Shenandoah brings to the table.

What Is GC?
GC is an automated way to reclaim for reuse memory that
is no longer in use. Unlike other languages in which objects
are allocated and destroyed manually, with GC, program-
mers don’t need to pick up and examine each object to decide
whether it is needed. Instead, the omniscient GC housekeeper
process works behind the scenes quietly discarding objects
that are no longer useful and tidying up what’s left. This
decluttering leads to an efficient program.

The JVM organizes program data into objects. Objects con-
tain fields (data) in a managed address space called a heap.
Imagine the Java class below, which represents a simple
binary tree node.

class TreeNode {
 public TreeNode left, right;
 public int data;
 TreeNode(TreeNode l, TreeNode r, int d) {
 left = l; right = r; data = d;

 }
 public void setLeft(TreeNode l) { left = l;}
 public void setRight(TreeNode r) {right = r;}
}

Now imagine the following operations performed on this class.

TreeNode left = new TreeNode(null, null, 13);
TreeNode right = new TreeNode(null, null, 19);
TreeNode root = new TreeNode(left, right, 17);

Here, I’ve created a binary tree with a root of 17, a left sub-
node of 13, and a right subnode of 19 (see Figure 1).

Suppose I then replace the right subnode, leaving subnode
19 as unconnected garbage:

root.setRight(new TreeNode(null, null, 21));

This results in the situation shown in Figure 2.

CHRISTINE H. FLOOD

The New Garbage Collectors
in OpenJDK
The upcoming G1 and Shenandoah garbage collectors

Figure 2. The same tree with
one subnode replaced

13

17

21 19

Figure 1. A three-node tree

13

17

19

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

21

//inside java /

As you can imagine, in the process of constructing and
manipulating data structures, the heap will start to look like
Figure 3.

Compacting the data means changing its address in mem-
ory. The Java program expects to find an object at a particular
address. If the garbage collector moves the object, the Java
program needs to know the new location. The easiest way to
do this is to stop all the Java threads, compact all the objects,
update all the references to the old addresses to now point to
the new addresses, and resume the Java program. However,
this approach can lead to long periods (called GC pause times)
when the Java threads aren’t running.

Java programmers aren’t happy when their applica-
tions aren’t running. There are two popular strategies for
decreasing GC pause times. The GC literature refers to
them as concurrent algorithms (doing work while the pro-
gram is running) and parallel algorithms (employing more
threads to get the work done faster while the Java threads
are stopped). The current OpenJDK default garbage collec-
tor (which can be manually specified on the command line
with -XX:+UseParallelGC)
adopts the parallel strategy. It
uses many GC threads to get
impressive throughput.

Parallel Garbage Collector
The parallel garbage collec-
tor segregates objects into
two regions—young and old—
according to how many GC
cycles they have survived.
Young objects are initially
allocated in the young region,
and the compaction step keeps
them in that region until they

have survived a certain number of young collections. If they
live long enough, they are promoted to the old generation.
The theory is that rather than pausing to collect the entire
heap, which would take too long, you can collect just the
part of the heap that is likely to contain short-lived objects.
Eventually it will become necessary to collect the older
objects as well.

In order to collect just the younger objects, the garbage
collector needs to know which objects in the old generation
reference objects in the young generation. The old objects
need to be updated to reference the new locations for the
new objects. The JVM does this by maintaining a summari-
zation data structure called the card table. Whenever a refer-
ence is written into an old-generation object, the card table
is marked so that during the next young GC cycle, the JVM
can scan this card looking for old-to-young references. With
these references known, the parallel garbage collector is
able to identify which objects to cull and which references
to update. It uses multiple GC threads to get the work done
faster while it has paused the program.

Figure 3. A heap with many unused data items in it

13

17

21

103

121

197

14

213
91

201 512

51

29 15

Shenandoah
compacts the
data concurrently.
As a consequence,
Shenandoah doesn’t need
to limit the number of
regions it collects in order
to minimize application
pause times.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

22

//inside java /

Garbage-First Garbage Collector
The new JDK garbage collector—named G1—uses both par-
allel and concurrent threads. It uses concurrent threads to
scan the live objects while the Java program is running. It
uses parallel threads to copy objects quickly and keep pause
times low.

G1 divides the heap into many regions. A region might be
either an old region or a young region at any time during the
program run. The young regions must be collected at every
GC pause, but G1 has the flexibility to collect as many or as
few old regions as it predicts it can collect within the user-
specified pause-time goal. This flexibility allows G1 to focus
the old-object GC work on the areas of the heap that have
the most garbage. It also enables G1 to tune collection pause
times based on user-specified pause times.

As shown in Figure 4, G1 will freely compact objects into
new regions.

G1 knows how much data is live in each region and the
approximate time it takes to copy that live data. If the user is
interested in minimal pause times, G1 can choose to evacu-
ate only a few regions. If the user is not worried about pause

times or has stated a fairly large
pause-time goal, G1 might choose
to include more regions.

G1 must maintain a card table
data structure so that it can collect
only young regions. It also must
maintain a record for each old
region that other old regions have
references to. This data structure
is called an into remembered set.

The downside of specify-
ing small pause times is that
G1 might not be able to keep up
with the program allocation rate,
in which case it will eventually

give up and fall back to a full stop-the-world GC mode. This
means that both the scanning and the copying work are done
while the Java threads are stopped. Note that if the GC can’t
meet the pause-time goal with partial collections, then a full
GC is guaranteed to exceed the allocated time.

In sum, G1 is a good overall collector that balances through-
put and pause-time constraints.

Shenandoah Garbage Collector
The Shenandoah garbage collector is an OpenJDK project
that is not yet part of the OpenJDK distribution. It uses the
same region-based heap layout as G1 and employs the same
concurrent scanning threads to calculate the amount of
live data in each region. It differs in the way it handles the
compaction stage.

Figure 4. Before and after a G1 run. Regions 1 and 2 are compacted
into region 4. New objects may be allocated to fill region 4. Region 3
is untouched because there would be too much copying work
(70 percent) for too little space reclamation (30 percent).

Region 1 is
60% garbage

Before GC After GC

G1 Heap Layout

Region 2 is
70% garbage

Region 3 is
30% garbage

Region 4
is empty

Region 1
is empty

Region 2
is empty

Region 3 is
30% garbage

Region 4 is
70% full

Region 5
is empty

Region 5
is empty

The key difficulty
with Shenandoah’s
concurrent copying
is that the GC threads
doing the copying work
and the Java threads
accessing the heap
need to agree on an
object’s address.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

23

//inside java /

Shenandoah compacts the data concurrently. (The sharp-
eyed among you will have noticed that this means it might
need to move objects around while the application is trying
to read them or write to them; don’t worry—I’ll come to that
in a second.) As a consequence, Shenandoah doesn’t need to
limit the number of regions it collects in order to minimize
application pause times. Instead it picks all the most fruitful
regions—that is, regions that have very few live objects or,
conversely, a lot of dead space. The only steps that introduce
pauses are those associated with certain bookkeeping tasks
performed at the beginning and end of scanning.

The key difficulty with Shenandoah’s concurrent copy-
ing is that the GC threads doing the copying work and the
Java threads accessing the heap need to agree on an object’s
address. This address might be stored in several places, and
the update to the address must appear to happen simulta-
neously. Like most thorny problems in computer science, the
solution is to add a level of indirection.

Objects are allocated with extra space for an indirec-
tion pointer. When the Java threads access the object, they
first read the indirection pointer to see whether the object
has moved. When the garbage collector moves an object, it
updates the indirection pointer to point to the new location.
New objects are allocated with an indirection pointer that
points to themselves. Only when an object is copied during
GC will the indirection pointer point to somewhere else.

This indirection pointer is not free. It has a cost in both
space and time to read the pointer and find the current loca-
tion of the object. These costs are less than you might think.
Spacewise, Shenandoah does not need the off-heap data
structures used to support partial collections like the card
table and the into remembered sets. Timewise, there are
various strategies to eliminate read barriers. The optimiz-
ing JIT compiler can realize that the program is accessing an
immutable field, such as an array size. It’s correct in those
cases to read either the old or the new copy of the object so

no indirection read is required. In addition, if the Java pro-
gram reads multiple fields from the same object the JIT
may recognize this and remove the subsequent reads of the
forwarding pointer.

If the Java program writes to an object that Shenandoah
is copying, a race condition occurs. This is solved by having
the Java threads cooperate with the GC threads. If the Java
threads are about to write to an object that has been targeted
for copying, the Java thread will first copy the object to its
own allocation area, check to see that it was the first to copy
the object, and then perform the write. If the GC thread
copied the object first, then the Java thread can unwind its
allocation and use the GC copy.

Shenandoah eliminates the need to pause during the copy-
ing of live objects, thus providing much shorter pause times.

Conclusion
If you are interested in the best end-to-end throughput, you
will probably want to use the parallel garbage collector that
currently ships in the JDK. If you want a good compromise
between pause times and throughput, the new G1 garbage
collector will work well for you. Shenandoah will be an attrac-
tive option for response-time-critical applications running
with large (more than 20 GB) heaps such as financial trading,
ecommerce, and other interactive applications in which the
user would be irritated by noticeable GC delays. </article>

Christine H. Flood is a principal software engineer for the Java
platform at Red Hat, where she works on Shenandoah.

A 2014 presentation about Shenandoah by the author
Oracle tutorial on garbage collection in the JVM

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://rkennke.files.wordpress.com/2014/02/shenandoahtake4.pdf
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

24

//inside java /

Java HotSpot VM has an advanced just-in-time (JIT) com-
piler that enables Java HotSpot VM to produce very highly

optimized machine code for any platform that Java HotSpot
VM runs on.

In this article, I examine an important aspect of Java
HotSpot VM’s JIT compiler: the code cache. Understanding
the code cache provides insight into a range of performance
issues that are otherwise difficult to track down.

Note: An article in this issue, “What Is the JIT Compiler
Actually Doing?,” and a previous article in Java Magazine,
“Introduction to JIT Compilation in Java HotSpot VM,” [PDF]
discuss introductory Java HotSpot VM and JIT compiler topics.

To start our journey toward the JIT compiler and code cache,
let’s begin by considering the lifecycle of a Java method.

Lifecycle of a Java Method
The smallest unit of new code that the Java platform will
load and link into a running program is a class. This means
that when a new method is being onboarded, it must go
through the class-loading process (as part of the class that
contains it).

The class-loading process acts as a pinch point: a place
where a lot of the Java platform’s security checks are concen-
trated. The lifecycle of a Java method, therefore, starts with
the class-loading process that brings a new class into the
running JVM.

Class Loading
Class loading starts with a stream of bytes (often read from
disk) that should be in the class file format. If the byte stream
fits into the expected format, the class loader can attempt to
link it.

The linking process has several phases, of which the
first—and most important—is verification. This is the phase
in which the JVM confirms that the new class file does not
attempt to violate Java’s robust programming model.

During the verification phase, several security constraints
are checked. For example, it is verified that
■■ Methods respect access control keywords
■■ Methods are called with correct static types
■■ Variables are assigned only suitably typed values
■■ Variables are properly initialized before use

The bytecode of methods is also extensively checked. A key
point here is that the JVM is a stack machine.

This choice was a deliberate one—it is much easier to prove
security (and other) properties on a stack machine than
with a register-based machine. This means that most of the
checks to be made on bytecode can be done economically via
static analysis at class-loading time, which greatly reduces
the chance of harmful code ever making it into a live JVM.

For example, the stack state can be deduced at every point
in a method without needing to keep track of the contents
of registers.

BEN EVANS

Understanding the Java
HotSpot VM Code Cache
Learn to detect and mitigate a full code cache.

PHOTOGRAPH BY JOHN BLYTHE

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://bitbucket.org/javamagazine/magdownloads/downloads/2012-05-IntroToJIT-Evans&Lawrey-articleOnly.pdf

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

25

//inside java /

Note that for performance reasons, JDK classes (from rt.jar)
are not checked. They are loaded by the primordial class
loader, which doesn’t do comprehensive security checks.

This use of class loading as the opportunity to verify byte-
code slows down the class-loading process. However, the
payoff is that it significantly speeds up runtime, because
checks can be done once and then omitted when the code is
actually run.

How Java HotSpot VM Implements Class Loading
The key method that is used to turn a stream of bytes into a
class object is the Java method ClassLoader::define
Class(). This method delegates to a native method,
ClassLoader::defineClass1(), which does some basic
checks and string conversion and then calls a C function
called JVM_DefineClassWithSource().

As we might expect, this is an entry point into the JVM, and
it provides access into the C++ code of Java HotSpot VM. Java
HotSpot VM uses the SystemDictionary to load a new class
via the parseClassFile() method of ClassFileParser.

Once class loading has been completed, the bytecode of
the method is placed inside a C++ object (methodOop) for the
bytecode interpreter to use.

This is sometimes called the method cache, although the
bytecode is actually held inline in the methodOop for perfor-
mance reasons.

How Do Methods Get Compiled?
Java HotSpot VM maintains a large number of performance
and tracing counters in the bytecode interpreter. These coun-
ters trigger the compilation of methods once the methods
have been run 10,000 times (for the server compiler).

The code that is output from the compiler is machine
code (specialized for the specific operating system and CPU
in use). It is placed into a central place—the CodeCache
(a C++ object)—which is a heap-like structure for holding

CodeBlob instances (which are the compiled representations
of method code).

With the code blobs in the code cache, the running system
is then updated to use the new compiled code rather than
interpreted mode (this update process, which involves updat-
ing pointers, is sometimes called pointer swizzling).

PrintCompilation
One of the simplest flags that can be used to control the JIT
compilation subsystem is -XX:+PrintCompilation. This
switch tells the JIT threads to add compilation messages to
the standard log. PrintCompilation is explained further in
the second article I linked to earlier.

Deoptimization
Java HotSpot VM’s server mode uses optimizations that it
can’t always prove hold true. It protects these optimizations
with sanity checks (often called guard conditions), and if a
check fails, Java HotSpot VM will deoptimize the code that
was based on that assumption.

It’s common for Java HotSpot VM to then reconsider and
try an alternative optimization. This means that the same
method might be deoptimized and recompiled several times.

We can see deoptimization events in the PrintCompilation
log; they show up as lines such as “made not entrant” and
“made zombie.”

These lines mean that a particular method, which had been
compiled to a code blob, has now been deoptimized. This usu-
ally (but not always) happens because a new class was loaded
and invalidated an assumption made by Java HotSpot VM.

What Happens as the Program Warms Up?
After a Java program starts up and goes through its initializa-
tion phases, it will normally get into normal operation and
the hot paths of code will start to develop.

If you do multiple runs with the PrintCompilation switch

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

26

//inside java /

on and collect the logs of which methods were compiled, a
pattern emerges:
■■ Compilation usually eventually stops.
■■ The number of compiled methods stabilizes.
■■ The set of compiled methods on the same platform for the

same test inputs is usually fairly consistent.
■■ The exact details of which methods get compiled depend on

the exact JVM, operating system platform, and CPU in use.
Note: The compiled code for a given method is not guaranteed
to be roughly the same size across platforms.

Similar size is the usual pattern, but there are cases in

which the picture can be different from this; you should
always check. One good way to do this is with Java VisualVM,
which shows the general shape of the class-loading curve in
its Classes section (the lower left panel of Figure 1).

What Happens if the Code Cache Fills?
In short, compilation has to stop. This is because once a code
blob is compiled, usually only deoptimization can remove it
from the code cache.

Code cache space is reclaimed by flushing the “zombie”
code blobs from the code cache. (Over time, any “not entrant”

blobs turn into zombies.)
In JDK versions after Java 7 Update 4,

there is an additional form of code
cache flushing: speculative flushing. In
this approach, the older methods are
marked as being potentially eligible
for flushing and they are disconnected
from the methodOop that created
them. If the VM needs to call the com-
piled method, the method is relinked
back to its methodOop and survives
being flushed.

However, if the method is not called
again within a certain time frame, the
methodOop is reverted to interpreted
mode, and the code blob is eligible for
being flushed.

What Happens During Startup?
To see why application startup time
could be problematic for the code cache,
let’s consider an imaginary Spring
application.

Spring applications start up using the
Bootstrap class, which locates an XML Figure 1. Java VisualVM showing class-loading data

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

27

//inside java /

file detailing the instances to be created and wired up (and
defines the classes to be loaded).

This means that Spring applications go through two phases
of class loading: first, the phase of loading the classes needed
to start the bootstrapping, and then a second phase that
occurs when the application classes are typically loaded.

From the point of view of JIT compilation, this is impor-
tant because the Spring framework uses reflection and other
techniques to discover which classes to load and instantiate.
These framework methods are called heavily during applica-
tion startup but then are never touched again after that.

If a Spring framework method is run enough to be com-
piled, it is going to be of minimal use to the application. It
will marginally improve application startup time, but at the
price of using up a scarce resource. If enough framework
methods are compiled, they can use up the entire code cache,
leaving no room for the application methods that we actually
want to be compiled.

To solve this problem, the JVM uses a system in which the
values of counters decay over time. In their simplest form,
the decay reduces the invocation counts for methods by
50 percent every 30 seconds.

This means that if methods are used only at startup, their
invocation counts will, within a few minutes, have decayed
down to effectively zero. This prevents the rarely used Spring
framework methods from using valuable code cache space.

Which Switches Control Compilation and
the Code Cache?
The following switches control compilation and the
code cache:
■■ -XX:+PrintCompilation shows log entries for compila-

tion and deoptimization events.
■■ -XX:CompileThreshold=n changes the number of times a

method must be called before being compiled.
■■ -XX:ReservedCodeCacheSize=YYm sets the overall size of

the code cache to be used.
■■ -XX:+UseCodeCacheFlushing allows a JVM to flush little-

used code blobs (this is on by default in Java 7 Update 4
and later).

How Do We Fix Applications Suffering from a
Full Code Cache?
To identify a full code cache and resolve it, first make sure the
cache is a limitation. That is always true in the event a “com-
pilation halted” warning is issued. You can check whether the
size is too small (and remediate the problem) using these steps.

1. Use -XX:+PrintCompilation to output the methods
that are actually being compiled.

2. Wait until this reaches steady state.
3. Repeat a few runs. Check that the results set is stable.
4. Try increasing the size of code cache (doubling is often a

good first step) using -XX:ReservedCodeCacheSize. If
more methods are now seen to be compiled, you can be
sure that the original code cache was too small.

5. Retest overall performance to ensure that increasing
the code cache size hasn’t harmed some other aspect of
application performance.

Optimizations such as this have an important empirical aspect:
once you make a change, you must measure its results carefully.
As this article demonstrates, the first step is understanding
what the JVM is doing so that you know what changes to try.

Ben Evans helps to run the London Java Community and repre-
sents the user community on the JCP Executive Committee.

Oracle’s JVM Specification for Java SE 8

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://docs.oracle.com/javase/specs/jvms/se8/html/index.html

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

28

//inside java /

The Java core libraries community has been working hard
to improve the Java Collections Framework by making it

lazier. Laziness in software is an architectural or systematic
approach that defers producing a result until it can be defini
tively determined that the result is needed. Many opera
tions can be decomposed into a collection of suboperations.
Laziness delays performing suboperations until the results
of those operations are needed to complete some other sub
operation or the overall operation.

A nonlazy approach to completing any operation is to per
form the entire sequence of suboperations and then combine
their results to produce the final result. The more efficient
lazy approach is to begin by combining the results of sub
operations. Whenever you discover a needed missing result
from an unsolved suboperation, you perform that subopera
tion to determine the subresult. Initially you start with no
computed subresults and accumulate results by complet
ing suboperations, enabling additional suboperations to be
completed and culminating in a final result for the whole
operation. Laziness successfully saves time if, when you have
the result of an operation, there were suboperations whose
results were never determined because those values were not
needed to determine the final operation result.

Anytime that the result of an operation is potentially or
likely not going to be needed as part of a final result, it makes

sense to defer that operation until it is determined that the
result is actually needed. The most common example of
laziness occurs in expression evaluation. Consider the follow
ing code:

int x = 5;
int y = 3;
if (x < 2 && y < 7) {
 ...

The simplest way to evaluate this expression would be to
evaluate each term and combine the terms:

5 < 2 => FALSE
3 < 7 => TRUE
FALSE && TRUE => FALSE

Notice that if the first term evaluates to false, then the result
of the entire expression will always be false. Therefore, we
need not bother evaluating the second term unless the first
term evaluates as true.

For Java programs, the Java Language Specification specifies
that terms of an expression are evaluated left to right and any
terms not needed for the result will not be evaluated at all.
This often saves computation. It is also very useful:

MIKE DUIGOU

For Faster Java Collections,
Make Them Lazy
How adding lazy operations to ArrayList and HashMap improved performance
and reduced memory usage

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

29

//inside java /

if (foo != null && foo.bar() == 3) {

In this example, calling the bar() method requires that
foo be nonnull. If foo is null then attempting to evaluate the
second term of this expression would cause a NullPointer
Exception. The Java lazy evaluation rules ensure that the
second term is evaluated only when the first term is true.
Logical AND (&&) terms can be thought of as equivalent to
nesting, so

if (foo && bar && baz) {

is equivalent to

if (foo)
 if (bar)
 if (baz)

This rewriting as nested conditionals also makes it clearer
why the unneeded terms are not evaluated. Lazy evaluation
also applies to logical OR (||) expressions, such as

if (true || something) {

The something term of this conditional expression is never
evaluated because the value of the expression can be deter
mined before it is evaluated.

These examples of laziness in expression evaluation are
useful in writing efficient and, probably just as importantly,
concise program logic. Other forms of laziness are just as
beneficial, but the connection between decisions made in
program flow and the benefit received usually isn’t as direct
or immediate.

If the result of a calculation is occasionally or frequently
discarded without being used, then it makes sense to avoid
using the resources required to produce it until it is necessary.
The most obvious saved resource is CPU cycles, but laziness

can also save memory in avoided
allocations and system resources
in avoiding unnecessary files,
sockets, threads, database con
nections, and more. Depending on
the situation, these savings can
be substantial.

Implementing laziness can be
a critical optimization strategy in
improving system performance. It
improves performance by avoid
ing unnecessary work rather
than improving the efficiency of
performing the work. Laziness is
akin to reducing the number of database queries an applica
tion makes by 30 percent as opposed to improving the per
formance of database queries in the same app by 3 percent.
Spending your effort on the former, if it is feasible, is much
more effective.

The Challenge of Lazy Collections
The implementation of laziness in the Java Collections
Framework, which is already quite well optimized, came
about as a result of analysis of application behavior. The
Oracle Performance Scalability and Reliability (PSR) team
evaluated the performance of some Oracle frameworks and
the applications that ran on those frameworks. The PSR
team found that it was quite common for both the appli
cation and the middleware to allocate ArrayList and
HashMap instances that were then never used in the life of
the object that contained them. About 2 percent of all allo
cated ArrayList and HashMap instances never received any
elements. Further analysis found that the collections were
used in some cases, but weren’t always needed. Some work
by the PSR team was done to see if refactoring the application
to handle the cases where the collections were needed and

In a smaller number
of applications,
I found that laziness
provided up to a 20
percent reduction in
memory usage and
a similar reduction in
memory churn.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

30

//inside java /

where they weren’t could be handled by separate classes with
a common base class and with the sometimesunused collec
tions defined in one of the subclasses. This approach turned
out to not be viable because a lot of the cases were similar to
the following representative example:

public abstract class RestRequest {
 protected final Map<String,String> httpHeaders =
 new HashMap<>();
 protected final
 Map<String,List<String>> httpParams =
 new HashMap<>();
 protected final Set<Cookie> httpCookies =
 new HashSet<>();

RestRequest is a made-up example class that would be
used in an application handling HTTP REST queries. REST is
a common approach to building APIs using HTTP for com
munications. In this example, each RestRequest object
is a specifically formatted HTTP request that represents a
call to a REST API provided by the host application. Each
RestRequest instance needs to present the important
aspects of an HTTP message to the application receiving the
request. This includes the HTTP headers (httpHeaders),
HTTP parameters from either query string or form data
(httpParams), and HTTP cookies (httpCookies). Each of
these types of HTTP features may be present in any HTTP
message, but the exact usage is determined by the individual
application providing the REST API and the client applica
tions using the REST API.

Because the usage of HTTP features for any given request is
indeterminate, including the data structures in RestRequest
for each potential feature is problematic. HTTP headers,
parameters, and cookies are common and required parts of
the HTTP protocol, but applications aren’t obliged to use all
of these features and may even choose to use none of them.
Some REST APIs may use HTTP parameters where others

might use cookies and headers. One possible approach to
handling optional features would be to provide many variants
of the RestRequest class to express all the possible combi
nations of HTTP features that might be used. This would be
both annoying and inconvenient to use, though. Even when
it could be determined that a particular HTTP feature will be
used for a particular type of request, it is common for that
feature to be used only on a fraction of the requests. Consider
that authenticated users might use cookies, whereas unau
thenticated users of the same request would not. Perhaps a
majority of requests are from unauthenticated users.

It makes program logic much simpler to have a single
RestRequest class with the httpParams field always avail
able and initialized whether it is used or not. (I’ll get back
to this.)

Because the framework or application couldn’t be refac
tored to eliminate the indispensable but frequently
unused httpParams and httpCookies fields, alternatives
were needed.

The overall goal was to improve application performance
by avoiding the cost of having a field like httpParams in a
class unless the field was actually used. One solution would
have been to lazily initialize the httpParams field in the
RestRequest class—that is, create the HashMap only when
HTTP parameters were found to be present. This would have
required the addition of guard checks around all uses of the
httpParams:

if(httpParams != null)

But because the RestRequest class is designed to be
extended, all subclasses that extend RestRequest would
need to have similar checks on their use of httpParams.
Because there was a lot of existing code without these checks,
it was unreasonable to suggest that RestRequest might sud
denly stop consistently initializing the field.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

31

//inside java /

Allowing httpParams to some
times be null would also have
made the logic of methods more
complicated with all of the added
guard checks that would require.
If the same approach were used
on many fields in RestRequest,
the logic of RestRequest meth
ods and subclasses would be
overly focused on repeated checks
to determine which features of
RestRequest were in use. Over
time, inevitably, mistakes would
creep in or cases would be forgotten when other parts of
RestRequest changed. One missing guard check on a field
containing null could ruin your whole day!

One solution—which is often useful, but not in this case—
would have been to leave unchanged the declaration portion
of httpParams,

protected final Map<String,List<String>> httpParams;

and move the initialization to constructors. In the con
structors, if it could be determined that no HTTP param
eters were present in a request, the httpParams field could
be initialized to Collections.emptyMap() rather than
creating a unique HashMap instance for every request.
(Collections.emptyMap() along with emptyList() and
emptySet()—these and other similar utility methods in
the Collections utility class are an efficient way to provide
an empty collection. These empty collections are often used
rather than creating a unique instance for an empty item.
They are frequently better than returning null because they
require no more space and, by not returning null, the checks
for a null result that would be required can be eliminated.)

After first pursuing adding laziness within the frame

works and applications by avoiding creating HashMap and
ArrayList instances, it became clear that the most effec
tive approach was to implement the laziness inside the Java
Collections Framework itself.

Updating Java Collections
Making modifications to fundamental Java classes such as
ArrayList and HashMap is serious business. There are mil
lions of programmers and billions of lines of code using
these classes, and both the programmers and the programs
expect that Java will provide reliable, consistent behavior and
performance from version to version. The Java Collections
Framework is a contract with developers and programs to
provide specified behavior. It is essentially impossible to
redefine the functionality of JDK classes—that is, to change
the contract—in Java updates or even major releases. Some
small refinements to the API contract are possible, but most
improvements available to the Java Collections Framework
are internal changes. Even internal changes must be consid
ered carefully to ensure that they do not have unwanted side
effects or cause unexpected behavior changes.

Earlier, I said it would be difficult to use a class such as
the RestRequest example if some of the fields might be
null. Potentially null public or protected fields require addi
tional work for anyone accessing them. Every dereference
of the field must be guarded by a check that the field is not
null. Failure to consistently check for null is a common
error in programs that have nullable fields in base classes.
It is often recommended not to allow protected or public
fields to be null. Handling potentially null fields is slightly
more manageable when the field is private. This is because
all references to the field are in a single file and it is much
easier to reason about the possible values of the field in all
object states.

Both ArrayList and HashMap use a package private array
field as their core data structure for storing elements or map

Java 8 also introduced
a significant new lazy
implementation, the
Streams API. This
library utilizes
laziness as a core
principle.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

32

//inside java /

entries. Other than the ArrayList or HashMap object itself,
this array is the only other memory allocated by ArrayList
and for empty or nearly empty HashMaps, the array is the
biggest memory allocation. The heart of the laziness upgrade
to both classes was to add guard checks for the array field
being null.

The primary benefit of the laziness added to ArrayList
and HashMap is that it delays and potentially avoids allocating
the array until the moment the first element is placed in the
array or map. Allocation of the memory used for the back
ing array is a significant cost for some applications. For other
applications, particularly where the unused collection is very
shortlived and none of the memory was known to be allo
cated after the allocating method was complete, the benefit is
in saved computation from initializing the array.

Because the field reference involved is for an array, the
JVM was already required to check that the array was non
null before either indexing into the array or determining the
length of the array. The added guard checks were explicit
versions of implicit null checks that were already happening.
This meant that adding the guard checks caused no perfor
mance penalty.

A second concern was that having the additional guard
checks and allocation logic in various methods would change
how HotSpot would choose to inline the methods or, more
important, not inline the methods, which could potentially
undermine performance. Inlining is an optimization used by
HotSpot for small methods. When HotSpot is compiling code
that invokes a short or simple method, it will often replace
the method call with the actual code of the invoked method.
There is a size limit on which methods HotSpot will inline.
Examination found that we were not near the inlining limit
boundary on any of the critical methods modified by adding
laziness; and by reusing an existing internal method in a few
places we were able to improve the inlining done by HotSpot.
There were still a few methods, less critical ones, that were

slightly slower as a result of the laziness changes, but even
on general benchmarks and performance tests the changes
produced a net win. So far, I haven’t identified any case where
the changes have produced a significant undesired effect.

Conclusion
When evaluating the memory usage of a JVM application,
there is more to consider than just the maximum memory
usage. Because the JVM uses garbage collection for memory
management, you must also consider the memory alloca
tion rate and the garbage collection pressure. Memory alloca-
tion rate refers to the rate at which the application allocates
new objects and the size of those allocations. Applications
vary widely in their allocation rate, and it is often an impor
tant factor in their throughput. Related to allocation rate is
the amount of effort that must be spent to garbage-collect
unused objects. Garbage collection pressure refers to how much
throughput you must sacrifice for garbage collection to ensure
that the application always has sufficient free memory to run.
Generally speaking, most reductions in allocation rate also
reduce the amount of garbage collection necessary.

In typical framework applications, the lazy initialization
changes to ArrayList and HashMap produced modest 1 per
cent to 2 percent improvements in memory usage and allo
cation rate and barely measurable performance gains. Just
as important, no applications had increased memory usage
or reduced performance. In a smaller number of applica
tions, I found up to a 20 percent reduction in memory usage
and a similar reduction in memory churn. These dramatic
benefits for some applications while simultaneously pro
viding small benefits to most applications and no known
negative impacts made the lazy initialization changes an
important improvement.

Considering again the RestRequest example, how would
the laziness changes to ArrayList and HashMap affect
its behavior and performance? The RestRequest fields

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

33

//inside java /

are still unconditionally initialized with final ArrayList
and HashMap instances. This means that the usage of
RestRequest is unchanged. No user programs have to add
checks for any of its fields being null. In practice, though, we
are likely to see that many of the collection instances cre
ated will be lazily empty—they will have deferred creation of
their element arrays, providing savings of both memory and
CPU cycles.

In any software system that has been refined over 20 years,
such as Java, it’s difficult to find any implementation change
that is a unilateral benefit for all cases. In contemplating
this change, I made sure that the normal uses of ArrayList
and HashMap were not negatively affected. The analysis of
performance on critical methods like HashMap.get() typi
cally examines the cost of every Java bytecode and every CPU
cycle—these are methods that are going to be run trillions
of times per year across millions of JVMs. Some slight move
ment of performance cost, moving costs from one execution
path to a different, later path, would be acceptable, but any
degradation in performance would need to be inconsequential
and would probably need to be offset by much larger perfor
mance gains elsewhere.

The analysis of the problem began by looking at application
and framework behavior in the hopes that something could
be done to reduce the cost of unused collections. This type of
topdown performance analysis is, by far, the best approach
to improving application performance.

Other opportunities for using laziness have been consid
ered for the Java Collections Framework. The most desirable
changes would be how HashMaps are built and resized. The
typical usage pattern of HashMap suggests that the imple
mentation would benefit from using different data struc
tures for small maps (and for larger maps before the first
get() operation).

There are other examples of laziness within the Java class
library. The most common is to cache the result of hash

code computations inside the hashCode() method. This is
used with stellar performance benefits by String and other
classes. Other caching cases have also been added. Some
of these caches improve performance by avoiding repeated
work; others save memory by reusing the same data struc
tures for multiple operations. Additional caching cases and
other lazy optimizations can be added if proved beneficial in
future Java updates. There also have been times when a cache
was wasteful or actually required too much effort to maintain
and it was removed from the implementation. In most cases,
because they don’t involve API changes, laziness improve
ments to the Java libraries can be added with significant ben
efit and little impact.

Java 8 also introduced a significant new lazy implementa
tion, the Streams API. This library utilizes laziness as a core
principle and frequently delivers much better performance
than simpler declarative approaches.

Laziness is an important optimization that has had sub
stantial benefits in the Java libraries. You should strongly
consider it if you need to improve the performance of a
library that’s in use by others and where many of the prin
cipal optimizations, such as algorithm refinement, have
already been implemented. </article>

Mike Duigou (@mjduigou) works on Java-based ocean-going
robots at Liquid Robotics. He was previously a developer on the
Java Core Libraries team at Oracle and contributed to the core
collections and Java 8 lambda libraries. Duigou has also enjoyed
working on autonomous cars, dancing robots, and industrial real-
time applications.

How laziness affects the size of an ArrayList allocation

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://stackoverflow.com/questions/34250207/in-java-8-why-is-the-default-capacity-of-arraylist-now-zero/34250231

Written by leading Java experts, Oracle Press books offer the most defi nitive,
complete, and up-to-date coverage of Java available.

www.OraclePressBooks.com • @OraclePressAvailable in print and as eBooks

Your Destination for Java Expertise

Raspberry Pi with Java:
Programming the

Internet of Things (IoT)
Stephen Chin, James Weaver

Use Raspberry Pi with Java to create
innovative devices that power the

internet of things.

Introducing JavaFX 8
Programming
Herbert Schildt

Learn how to develop dynamic JavaFX
GUI applications quickly and easily.

Java: The Complete Reference,
Ninth Edition
Herbert Schildt

Fully updated for Java SE 8, this
definitive guide explains how to

develop, compile, debug, and run
Java programs.

OCA Java SE 8 Programmer I
Study Guide (Exam 1Z0-808)
Edward Finegan, Robert Liguori

Get complete coverage of all
objectives for Exam 1Z0-808.

Electronic practice exam questions
are included.

http://www.OraclePressBooks.com

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

35

//inside java /

Annotations appeared on the Java platform for Java 5 more
than ten years ago, and they have become an integral

part of the ecosystem. In this article, I go over a brief history
of how and why annotations came about and then dive into
technical details explaining how they operate, how they are
best used, and how to write your own.

Origins
The idea of adding metadata to source code is quite old and
comes from the simple realization that very often the code
you write doesn’t contain all the information a tool needs
to do its job. On the Java platform, an early form of annota-
tions began to appear before Java 5, but because the lan-
guage did not officially support them, developers resorted
to the unlikely Javadoc tool to add annotations to their code.
Specifically, two tools brought annotations into the spotlight
in the early 2000s:
■■ EJBGen, which enabled developers to add Javadoc annota-

tions to their source code and which then generated the
complicated EJB XML descriptors

■■ XDoclet, which took EJBGen’s idea to the next level by pro-
viding a general framework for using Javadoc tags as anno-
tations for any domain, not just for EJBs

These two tools became popular very quickly and opened the
door for annotations to become officially supported by the
JVM. JSR 250, Common Annotations for the Java Platform, was
created specifically for this purpose and was scheduled to ship
with Java 5. The idea was to make annotations type-safe and
extensible so that developers could easily write their own.

It’s interesting to note that since 2004, there has been only
one major update to annotations in the JDK: JSR 308, which
added more locations where annotations could be placed.
But that’s pretty much it. Today you are still using the same
annotations as specified in 2005 with hardly any modifica-
tions. (JSR 308 added some minor utility that was discussed in
the March/April 2014 issue.) It’s hard to deny that JSR 250 has
been a stable success that enabled many innovations, which
I’ll discuss shortly.

When to Use Annotations
Like all tools, annotations should be used judiciously. They
are a great match for a certain category of problems but a
poor choice when key conditions are not met. The main
alternative to annotations is configuration files. Such files
can hold the metadata that your code can’t contain, just like
annotations, so how do you decide whether specific metadata
should be stored in annotations or in an external file?

The general rule of thumb is: If the metadata is tied to a
Java element (method, field, variable, class, package, and so
on), then it should be placed in an annotation. Otherwise, it
should be stored in a configuration file.

As I mentioned, EJBs were the first target for annotations
because their deployment descriptors were complicated XML
files that referenced methods in the code and added extra
information to them. This approach was error prone because
refactoring code (such as renaming a method) might not
be reflected in the deployment descriptor, and the applica-
tion now fails to work. Instead, annotating the method that

CÉDRIC BEUST

Annotations: An Inside Look
How annotations work, how best to use them, and how to write your own

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/technetwork/articles/java/ma14-architect-annotations-2177655.html

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

36

//inside java /

is the target of the metadata is much safer (starting with
the fact that now you are no longer duplicating the name
of that method—a violation of the DRY principle: Don’t
Repeat Yourself).

Here are some other good examples of annotation uses:
■■ Code correctness. Annotations such as @Nullable,
@Deprecated, and @Override add important seman-
tic information to methods and fields that the compiler
can enforce.

■■ Test methods. Before TestNG and annotations came along,
JUnit was using reflection to indicate that a method was
a test method, which required specific naming conven-
tions. With an annotation, it’s no longer necessary to use
naming conventions.

■■ Persistence (for example, Hibernate). You can annotate
fields and methods in order to tie them to data stored in
the database.

■■ Dependency injection. Classes that need to be injected can be
annotated as such along with fields and parameters.

■■ Graphical toolkits. As an example, Android describes graphi-
cal layouts using XML; with annotations you can now
directly tie graphical elements (text views, buttons, and so
on) to the field that holds their reference.

Note that all these examples share the same characteris-
tic: tying information to Java elements. In contrast, here
are a few examples of metadata that are not good fits for
Java annotations:
■■ Deployment information such as host names, ports, pass-

words, and other authentication details
■■ Connection pools informing your application how to con-

nect to a database
■■ Parameters describing how an application should be

launched or what kind of information is accessible
at runtime

Important Annotations
Annotations are pretty much unavoidable in modern Java and
plenty of libraries provide their own, but there are a few that
stand out and that you should be using regularly.
@Nullable and @Nonnull (javax.annotation). These annota-
tions can be placed on fields and method parameters, and
they indicate whether these variables can be null. They are
extremely useful, and a lot of tools on top of the Java com-
piler (javac) recognize them (starting with the major IDEs).
You should use them at every opportunity. You will quickly
notice the number of null pointer exceptions in your codebase
sharply decreasing.
@Override. You are probably already familiar with this anno-
tation because it has been mandatory since Java 6, and for
good reason. This annotation must be placed on any method
overriding a method from a parent interface or class. It pre-
vents you from accidentally overriding a method or, con-
versely, from thinking you overrode such a method but did
not because of a typo.
@FunctionalInterface. This is a new addition to Java 8. It
makes sure that the interface so annotated is indeed a
functional interface—that is, an interface with exactly one
abstract method. The idea behind this annotation is that if
one day you or someone on your team accidentally adds an
abstract method to that interface, the compiler will issue
an error.
@SuppressWarnings. This annotation is self-explanatory.
Warnings are usually extremely useful, and you should never
turn them off globally. However, it’s occasionally useful to
turn them off for specific statements or expressions when you
know that your code is safe but the compiler doesn’t.

Writing an Annotation
Let’s take a look at a popular annotation: @Test. Here is
its definition:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

37

//inside java /

@Retention(RUNTIME)
@Target({METHOD})
public @interface Test {

Each line in the snippet above is important. Let’s go over
them one by one, starting from the bottom:

public @interface Test {

The syntax here is specific for annotations. Annotations look
like Java classes but have several restrictions, which we will
cover shortly.

@Target({METHOD})

This annotation specifies what Java elements can be anno-
tated. METHOD is part of the java.lang.annotation
.ElementType enum, which lets you define other locations
for annotations such as CLASS, CONSTRUCTOR, and so on.

@Retention(RUNTIME)

This annotation indicates whether your annotation will
be preserved in the class file or discarded by the compiler.
If you want to be able to look up your annotation via reflec-
tion, the retention should be set to RUNTIME. The other
options can be found in the java.lang.annotation
.RetentionPolicy class.

Content of an Annotation
It is possible to pass additional parameters to annotations:

@Test(description = "Verify that bug #121 is fixed")
@Table(name = "ACCOUNTS")

These additional parameters are called attributes. They are
defined as methods inside the declaration of your annotation:

public @interface Test {
 String description() default "";
}

Attributes are methods that don’t have a body and that can
optionally be assigned a default value. If you fail to use the
default keyword, then that attribute needs to be specified
when the annotation is used; otherwise, the compiler will
issue an error. An important restriction on attributes is that
they need to be constants: primitive types or a string (and
they can’t be null).

There are two interesting details that were included in the
specification in order to reduce the amount of verbosity found
in code using annotations.

If the annotation defines an attribute with the special name
value, then you can specify that attribute without the word
value. The following annotation:

public @interface Person {
 String value();
}

can be written as

@Person("John")

instead of the more common

@Person(value = "John")

In a similar vein, attributes of type Array can use a short-
hand version when that array has only one element:

public @interface Languages {
 String[] value();
}

can use

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

38

//inside java /

@Languages("English")

instead of the more verbose

@Languages(value = { "English" })

These syntactic shortcuts were designed to reduce the boiler-
plate code necessary when using annotations.

Annotations in Action
Now that you can define simple annotations, how do you
actually use them? By design, annotations defined by third-
party developers are completely ignored by the compiler.
There are a few specific exceptions that the compiler acts
upon (such as @Deprecated), but as a rule, annotations will
never modify the semantics of the code to which they are
applied. Therefore, the only way to make use of annotations
is to write a tool that will act upon them.

There are two ways such tools can be written: as external
tools or as annotation processors.

External Tools
External tools are the simplest approach to processing excep-
tions: you implement a separate application with its own
main() method, and users of your annotations simply need
to run this tool on their classes. This is the approach used by
TestNG, JUnit, Guice, and other well-known tools. Such tools
are typically run as part of your build, and the output of these
tools can be quite varied: source files, documentation files,
XML, and so on. There is really no limit on what these tools
can do.

The JDK comes with an API to look up annotations in
class files that is sprinkled throughout the reflection pack-
age. For example, you can either obtain all the annotations
on a given class or only retrieve specific ones. Consider the
following code:

@Languages({ "English", "French"})
class MyClass { … }

We can look up the annotation as follows:

Languages[] languages =
 getClass().getAnnotationsByType(Languages.class);
for (Languages language : languages) {
 System.out.println(
 "Languages spoken: " + language.value());
}

Annotation Processors
Annotation processors are a relatively recent addition to the
JDK, and they have opened up a whole new level of innova-
tion in the annotation field. Annotation processors were born
from the observation that a large proportion of tools that
process annotations generate Java source files, which then
need to be compiled. Therefore, it appeared useful to inte-
grate such processing inside the Java compiler itself so that
the process could be streamlined.

The idea behind annotation processors is to declare them
to the compiler so that it will invoke the processors first and
then automatically compile the resulting output. Then the
compiler resumes its usual process after adding your com-
piled classes to its classpath.

The API is a bit different from the reflection code I just
covered, with a few variations. For example, instead of you
looking up annotations, the compiler notifies you when-
ever it encounters an annotation. This approach is much
more efficient.

Writing annotation processors is a bit more involved and
would require a full article of its own. So for now, I’ll explain
the value of annotation processors.

Generating source code is not a new practice on the JVM.
But because annotation processors hook directly into the
compiler, a lot of the pain in building and processing the

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

39

//inside java /

output is alleviated. There are several mechanisms that make
running annotation processors completely seamless. For
example, all it takes is for the JAR file containing your pro-
cessor to be on the classpath for javac to detect it and run it.

Annotation processors have become particularly impor-
tant on Android because they enable library developers to
replace reflection calls (which are slow and therefore a spe-
cial concern on Android) with direct calls. On top of that, the
generated source code makes it possible to statically verify
that your code is correct, something that can’t be achieved
with reflection.

Conclusion
Annotations are an integral part of the Java platform. They
have allowed the language and the ecosystem to evolve
in innovative and productive directions that wouldn’t
have been possible otherwise. It’s important to understand
how they work and to know what they are capable of so
that you can make informed decisions about using them in
your own codebase. </article>

Cédric Beust (@cbeust) has been writing Java code since 1996,
and he has taken an active role in the development of the language
and its libraries through the years. He holds a PhD in computer
science from the University of Nice, France. He was a member of
the Expert Group that designed annotations for the JVM.

Oracle’s Java annotations tutorial
Checker Framework (which uses annotations heavily to
check code)

learn more

Oracle Cloud Services for
Java Developers
Oracle has been rolling out cloud services for developing
and deploying Java applications. These services comple-
ment existing services that Oracle offers at all the major
cloud tiers: infrastructure as a service (IaaS), platform as
a service (PaaS), and software as a service (SaaS). With
these rollouts, there are now multiple cloud services of
interest to Java developers, of which these three will be
discussed in technical detail in future issues.

Oracle Application Container Cloud provides rapid self-
service provisioning of dedicated and isolated Java SE and
Node runtime application containers in the cloud. These
containers run Oracle JDK (version 7 or 8), which includes
Oracle Java Flight Recorder, a tool that is not available in
the standard JDK. The solution also offers Node.js, which
is the server-side JavaScript environment. Billing is done
either by the month or by the hour and billed per giga-
byte of RAM.

Oracle Developer Cloud Service is a free entitlement of
Oracle Java Cloud Service (see next item) and is described
as a “PaaS environment for the enterprise.” It includes
instances of Git, Maven, Hudson (the continuous integra-
tion tool), a tasks tool, and a wiki. The Hudson instance
allows three concurrent builds.

Oracle Java Cloud Service offers Oracle WebLogic
Server (either 11g or 12c) running either in a cluster or
on dedicated virtual machines. This service also offers
Oracle Coherence caching and in-memory data grid as
an option. An additional SaaS Extension enables inte-
gration with Oracle Software as a Service (including
Oracle Sales Cloud, Oracle Service Cloud, and Oracle
Marketing Cloud).

//enterprise /

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/tutorial/java/annotations/
http://types.cs.washington.edu/checker-framework/
https://cloud.oracle.com/en_US/acc
https://cloud.oracle.com/en_US/developer_service
https://cloud.oracle.com/en_US/java

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

40

//new to java /

Enumerations—or enums for short—are Java constructs
that are not used as much as they should be. They aren’t

one of those big, bold, buzzy concepts that get people excited
or force themselves on you. Rather they quietly improve code,
making it more reliable and more readable.

If you’re new to Java, then it’s entirely possible that you’re
writing good, functioning code but are not using enums. If so,
you’re not alone.

There are several reasons why some developers don’t use
them. First, early versions of Java did not have enums. Some
programmers may have learned Java before Java 5, when
enums were added to the language, and they never got around
to changing their habits. Others may have come from dif-
ferent languages that did not support enums. And lastly, you
might not have felt the need to use them because you were
perfectly able to solve your problems without them. None of
these are good reasons to continue ignoring them.

Enums enable you to make your code significantly bet-
ter: more robust, more type safe, less error-prone, and more
elegant. And these things matter. So sit back and read on.

When and Why to Use Enums
Let’s examine the use of enums with an example. Suppose
you want to write a text-based adventure game—something
similar to Colossal Cave Adventure or Zork, two classic com-
puter games. Then you will have a set of command words that
the user can type in. And let’s say the valid command words
are go, look, take, help, and quit.

Somewhere in your code, you are likely to have a defini-
tion of those command words. In a straightforward first
implementation, they might be defined in an array of strings,
like this:

private static final String[] validCommands = {
 "go", "look", "take", "help", "quit"
};

Somewhere else in your program, you will have some code
that reacts to these words being entered. The code then
calls the right method to act on them. In this code snippet,
I assume that the String variable commandWord holds the
word that was typed in.

switch (commandWord) {
 case "go":
 goRoom(secondWord);
 break;
 case "look":
 look();
 break;
 case "take":
 takeItem(secondWord);
 break;
 case "Help":
 printHelp();
 break;
 case "quit":
 quit();

MICHAEL KÖLLING

PHOTOGRAPH BY JOHN BLYTHE

Making the Most of Enums
Anytime you have a set of known constant values, an enum is a type-safe representation
that prevents common problems.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://en.wikipedia.org/wiki/Colossal_Cave_Adventure
https://en.wikipedia.org/wiki/Zork

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

41

//new to java /

 break;
}

(An alternative would be to define a sequence of int con-
stants for these commands, and then translate the input
string to a number and switch on the int constant. This
popular variant has the same problems that I discuss with
our solution here.)

What’s wrong with this solution? There are really two sepa-
rate fundamental problems that immediately stand out: type
safety and internationalization.

Let’s deal with type safety first. The short code segment
presented above is quite straightforward and easy to under-
stand. It works, right? In fact, it doesn’t. There is a bug in the
code. Did you spot it?

The problem is that the help command has been mistyped
in the switch statement as Help. Even though it was our
intention that the commandWord should only ever be one of
the strings listed as valid commands, there is nothing stop-
ping us from assigning invalid commands or comparing it
to invalid commands. Because the declared type is String,
any string will do. In effect, our type system is not good
enough. The declared type does not properly describe the set
of acceptable values, and (logically) illegal values can be used
without the type system being able to detect this.

Enums to the Rescue
To avoid this problem, we can rewrite our code using enums.
We first write an enum declaration:

public enum CommandWord
{
 GO, LOOK, TAKE, HELP, QUIT
}

This declaration should be treated like a class and written
in its own file. It defines the type CommandWord and the five

listed names as valid values for that type. In other classes,
we can then declare variables of this type and assign values.
For example:

CommandWord command = CommandWord.GO;

And importantly, we can rewrite our switch statement to
the following:

switch (commandWord) {
 case GO:
 goRoom(secondWord);
 break;
 case LOOK:
 look();
 break;
 case TAKE:
 takeItem(secondWord);
 break;
 case HELP:
 printHelp();
 break;
 case QUIT:
 quit();
 break;
}

The definition of the command words in this version (as an
enum, instead of a string array) is not only clearer and sim-
pler, it also creates type safety: if you now mistype a case
label or a value in an assignment, the compiler will detect
this and notify you. This is a real win—we have our strong
type system back that Java was designed for.

By the way, we can also use the double equals symbol (==)
for checking equality, instead of the .equals() method that
we had to use with strings:

if (command == CommandWord.QUIT) ...

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

42

//new to java /

What Really Is an Enum?
Some people use enums only as described here and think of
them as similar to int constants: named values that can be
assigned and recognized later. But this is not the complete
truth, and if you stop here, you have only scratched the sur-
face and are missing out on some of the best features.

Enum declarations are full classes, and the values listed
are constant names referring to separate instances of these
classes. The enum declaration can contain fields, construc-
tors, and methods, just like other classes. Here is an extended
version of the previous enums:

public enum CommandWord
{
 GO("go"), LOOK("look"), TAKE("take"),
 HELP("help"), QUIT("quit");
 private String commandString;

 CommandWord(String commandString)
 {
 this.commandString = commandString;
 }

 public String toString ()
 {
 return commandString;
 }
}

The important aspects are the following:
■■ Enum declarations are classes, and enum values refer

to objects.
■■ For every declared enum value, an instance of the class is

created and assigned to that value.
■■ No other instances of this class can be created later.
■■ Every different enum value will refer to a different object,

and the same value will always refer to the same object;
this cannot be changed.

■■ Enums create their own namespace, so different enum
classes may use the same value, but these are kept sepa-
rate. If, for example, I have an enum class BoardGames, the
enum values BoardGames.GO and CommandWords.GO are
separate and do not interfere with each other.

The last aspect—that no other instances may be created—is
ensured by making the constructor private. It is not neces-
sary to declare this explicitly: the constructor is automatically
private, and it is an error to try to make it public.

The previous code will generate five enum objects—one for
each value. And any reference in other code to CommandWord
objects can be to only one or more of these enums. Any
attempt to create other objects will generate a compile-
time error.

Enums may contain any number of fields, constructors, and
methods. The fundamental difference when compared with
“normal” classes is in how enum instances come into exis-
tence. While other classes start without any instances and
provide a constructor for clients to create as many objects as
they like, enums provide no constructor (to the outside), and
instead provide a set of ready-made instances.

The fact that enum values are objects, not ints, is impor-
tant. It means that enums provide not only identity but also
state and behavior.

The Full Truth
The first question that now comes to mind is this: If the con-
structor cannot be called from the outside, what is it used for?

The answer lies in the modified syntax we have used for
enumerating our enum values. Instead of just

 GO

as in our first version we have now written

 GO("go")

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

43

//new to java /

This extension—effectively adding a parameter list to the
enum value—invokes the enum’s constructor. The expression
within the parentheses is the actual parameter passed to the
constructor. The enum object is still of class CommandWord, as
before, but we are now storing a string attribute inside it. And
the value for this attribute is passed in to our enum object via
its constructor. We can store any number and type of attri-
butes inside an enum object—that is, in instance fields—just
like in any other object.

Read our CommandWord definition again—it should all
slowly come together and start to make sense now.

The great advantage of this scheme is that we can now use
a String again to recognize the typed word (for example,
"help") by comparing the input string against the command
strings stored inside our enums, but our program logic is
independent of these strings.

Earlier, I mentioned that another problem with our first
version was internationalization: If we decide to translate our
program into a different language (let’s say the "help" com-
mand is now "hilfe") we run the danger of introducing
errors. If we just change the command words in the array,
the program will compile but not function; none of the com-
mands will be recognized, but we don’t get an error. The
problem is that the strings are not only used for input but
also for the program logic. That is bad.

In our new enum version, that problem has been resolved.
The actual command strings are mentioned only once; if
they change, they need to be changed only in one location,
and the program logic works with logical values—the enum
constants—that will continue to work. (In practice, the input
commands would be read out of a locale-dependent text file,
but the principle is the same.)

Under the Hood
Enums are really implemented as classes, and enum val-
ues are their instances. There is little special about this, and

knowing this helps us understand how they work and what
we can do with them.

Enum classes all automatically inherit the Java standard
class Enum from which they inherit some potentially use-
ful methods (it also means that they cannot extend another
class).

The inherited methods you should know about are name(),
ordinal(), and the static method values().

The name() method returns the name exactly as defined in
the enum value. The ordinal() method returns a numeric
value that reflects the order in which the enums were declared,
starting with zero. For example,

CommandWord cmd = CommandWord.GO;
System.out.println(cmd.name());
System.out.println(cmd.ordinal());

will print

GO
0

In practice, these two methods are much less useful than you
might first think. Your code typically should not depend on
the actual enum name (so the name() method is not often
useful; it is much better to override and use the toString
method for that purpose), and if you write your code well you
will rarely need the ordinal number.

The static values() method is more often useful. It
returns an array of all enum values and can be used to iterate
over them. Here’s an example.

CommandWord[] ca = CommandWord.values();

for (CommandWord cw : ca) {
 System.out.println(cw);
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

44

//new to java /

Or, if you are familiar with Java 8’s streams, you can also
write the following:

Arrays.stream(ca).forEach(System.out::println);

The Enum Singleton Pattern
Once you understand how enums are really implemented
under the hood (most importantly, that they are just
classes with a different instance creation mechanism), you
might discover some helpful ways to use them. One exam-
ple I use regularly is to employ an enum to implement a
singleton pattern.

A singleton is employed to ensure that only a single
instance exists of a given class. It is often written by creating
the instance in the class, making the constructor private,
and providing a static factory method to hand out the
instance, as in the following example:

public class Singleton {
 private static Singleton instance =
 new Singleton();

 public static Singleton getInstance()
 {
 return instance;
 }

 private Singleton()
 {
 ...
 }
}

The singleton instance can then be accessed from the outside
by writing

Singleton s = Singleton.getInstance();

A nice alternative is to use an enum to define the singleton:

public enum EasySingleton {
 INSTANCE;
}

No more work is needed, and the instance can easily be
accessed from client code:

EasySingleton s = EasySingleton.INSTANCE;

Fields and methods can still be added to the singleton class as
before. Enum instance creation is by default thread-safe, so
this method is safe to use in a multithreaded application.

Conclusion
I hope this short introduction has demonstrated the advan-
tages of enums. Anytime you find yourself defining a set of
constant values, you should think of enums as your preferred
way of representing them. This choice gives you type safety,
support for internalization, and warnings at compile time
about possible coding errors. Overall, it will make your code
more readable and less prone to errors. </article>

Michael Kölling is a professor at the University of Kent, UK. He
has published two Java textbooks and numerous papers on ob-
ject orientation and computing education topics, and is the lead
developer of BlueJ and Greenfoot, two educational programming
environments. Kölling is an Oracle Java Champion, a UK National
Teaching Fellow, a Fellow of the UK Higher Education Academy,
and a Distinguished Educator of the ACM.

Oracle Java tutorial on enums

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

45

//enterprise java /

Java EE applications usually rely on a data repository for
storage of application data. An application data repository

can be a typical RDBMS (relational database management
system) such as Oracle Database, MySQL, PostgreSQL, or
Microsoft SQL Server. Often in modern applications, though,
NoSQL databases such as MongoDB, Cassandra, Couchbase,
Oracle NoSQL Database, or Neo4j are used as back-end data
repositories. Regardless of the data repository solution for a
Java EE application, the Java Persistence API (JPA) plays a vital
role for the storage and retrieval of application data.

In my article in the May/June 2015 issue of this magazine,
“What’s New in JPA,” I took a look at a handful of the fea-
tures that were added to JPA 2.1, which is part of the Java EE 7
release. In that article, I covered features such as attribute
conversion, schema generation, named stored procedures,
and more. I also touched briefly on a new feature for the
Criteria API: bulk operations. In this article, I do a deeper dive
into the Criteria API to explain more of its benefits, which
include the ability to create queries without using strings of
text. I also take a deeper look at some of the newer features
that were added as part of JPA 2.1.

Constructing JPA Queries
As you may know, there are a handful of ways to query,
update, and delete data using JPA. Let’s take a brief look at

each of them to refresh our memory, and then we’ll explore
more detail about the Criteria API. In these examples, I’ll use
the same basic SELECT query for each example so that you
can gain a better understanding of each. Namely, I’ll select all
records from the POOLS database table. Listing 1 demonstrates
each of the techniques for performing this simple query
in JPA.

Listing 1.
// Named Query
public List<Pool> getAllPoolsNamed(){
 return em.createNamedQuery("Pool.findAll")
 .getResultList();
}

// Native Query
public List<Pool> getAllPoolsNative(){
 List<Pool> pools = (List<Pool>)
 em.createNativeQuery(
 "select * from Pool",
 com.acme.acmepools.entity.Pool.class)
 .getResultList();
 return pools;
}

// JPQL Query
public List<Pool> getAllPoolsJPQL(){

JOSH JUNEAU

What’s New in JPA:
The Criteria API
Create queries and update databases with Java entity classes
and fields, rather than with strings of SQL.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

46

//enterprise java /

 return em.createQuery("select o from Pool o")
 .getResultList();
}
// Criteria API Query
public List<Pool> getAllPoolsCriteria(){
 CriteriaBuilder cb = em.getCriteriaBuilder();
 CriteriaQuery cq = cb.createQuery();
 Root<Pool> from = cq.from(Pool.class);
 TypedQuery<Pool> typedQuery =
 em.createQuery(cq.select(from));
 return typedQuery.getResultList();
}

Named queries, which can be defined in a few different ways,
basically map a typed query to a specified name. The query
can later be called upon by name, and JPA will then perform
the assigned query. Native queries are strings of text that
formulate a SQL query using the native syntax of the target
database platform. Native queries have a tendency to be less
portable. One of the most frequently used techniques for que-
rying with JPA is to use the Java Persistence Query Language
(JPQL). Similar to native queries, JPQL queries are constructed
of strings of text to formulate a query using JPQL syntax. JPQL
is based on the abstract schema of entity classes that have
been registered with a persistence context. All related objects
of those entity classes can also be managed via JPQL. The
advantages of using JPQL are
that the syntax is similar to
standard SQL, and JPQL que-
ries are portable regardless
of the underlying datastore—
even if it’s NoSQL.

Lastly, the Criteria API can
be used to construct queries
in a strongly typed manner
using the Java entity classes
and fields, rather than using

strings of text. Similar to JPQL, the Criteria API is also based
upon the abstract schema of entity classes, so it works in
concert with the persistence context. Looking at the end of
Listing 1, it is plain to see that the Criteria API can be rather
verbose. However, there are some significant advantages to
using the API. Let’s take a look at those.

Getting Started with the Criteria API
The Criteria API allows you to build database queries in a
strongly typed manner from objects, using all Java code. Doing
so cuts down on the possibility for errors, because you no longer
need to worry about making sure that typed JPQL or SQL que-
ries are error-free. Another advantage is that these queries are
completely portable, meaning that the queries are independent
of the underlying datastore. The API also contains an extensive
Metamodel API, which assists in producing type-safe queries.

The Criteria API query shown at the bottom of Listing 1 fol-
lows the procedural set of steps that are typically followed to
create a query and retrieve data. Let’s walk through each step
in detail.

First, create a CriteriaBuilder object from the
EntityManager or EntityManagerFactory:

CriteriaBuilder cb = em.getCriteriaBuilder();

Next, create a CriteriaQuery object from the
CriteriaBuilder:

CriteriaQuery cq = cb.createQuery();

The CriteriaQuery can be used to designate against which
entities the query will be executed. To do this, call its from
method and pass the class object for the entity; it will return
a Root object of the given entity class type. The Root repre-
sents the entity from which all navigation will originate. This
example navigates over the Pool entity:

An advantage is that
Criteria API queries are
completely portable,
meaning that the queries
are independent of the
underlying datastore.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

47

//enterprise java /

Root<Pool> from = cq.from(Pool.class);

Then use the Root to create a TypedQuery object. To do that,
call the EntityManager.createQuery() method, and
pass the CriteriaQuery.select method, along with the
Root object:

TypedQuery<Pool> typedQuery =
 em.createQuery(cq.select(from));

Lastly, retrieve the results by calling the TypedQuery
.getResultList() method:

typedQuery.getResultList();

Once the query has been executed and results are returned,
any fields from the specified entity can be navigated,
because they are all available in the object. Similarly,
any related records are made available. For instance,
Listing 2 shows how to use a Pool. The Pool entity contains a
Collection<Customer> field that can be used for retriev-
ing Customer objects that own a Pool of the specified type. In
the entity class, the fetch mode is set to FetchType.LAZY,
meaning that the Collection<Customer> is available only
when the getCustomers() method is explicitly called upon.
If I wanted to have the Collection retrieved at the same
time as the Pool objects, the fetch mode should be set to
FetchType.EAGER.

Listing 2.
@Entity
@Table(name = "POOL")
@XmlRootElement
@NamedQueries({
 @NamedQuery(name = "Pool.findAll",
 query = "SELECT p FROM Pool p"),
 . . .

 })

. . .
public class Pool implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @Basic(optional = false)
 @NotNull
 @Column(name = "ID")
 private Integer id;
 @Size(max = 10)
 @Column(name = "STYLE")
 private String style;
 @Size(max = 10)
 @Column(name = "SHAPE")
 private String shape;
 // @Max(value=?) @Min(value=?)//if you know
 // the range of your decimal fields, consider
 // using these annotations to enforce
 // field validation
 @Column(name = "LENGTH")
 private Double length;
 @Column(name = "WIDTH")
 private Double width;
 @Column(name = "RADIUS")
 private Double radius;
 @Column(name = "GALLONS")
 private Double gallons;
 @Column(name = "SHALLOW_DEPTH")
 private Double shallowDepth;
 @Column(name = "DEEP_DEPTH")
 private Double deepDepth;
 @OneToMany(mappedBy = "pool",
 fetch=FetchType.LAZY)
 private Collection<Customer> customer;

 public Pool() {
 }

 . . .

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

48

//enterprise java /

}

Working the Metamodel
Now that you know how to create a standard query and
retrieve results, it is time to learn how to really exploit the
power of the Criteria API. To dig into the API and main-
tain type-safe operation, work with the metamodel of the
application entities. All entity classes that are used with the
Criteria API have a class that is either constructed at runtime
behind the scenes or statically developed via the use of anno-
tations. A metamodel allows direct access to each of the fields
within the entity without passing the string-based name of
the field. This approach creates a type-safe programming
model. Listing 3 shows the statically typed metamodel class
for the Pool entity.

Listing 3.
import javax.persistence.metamodel.*;

@StaticMetamodel(
 com.acme.acmepools.entity.Pool.class)
public class Pool_ {

 public static volatile
 SingularAttribute<Pool, Integer> id;
 public static volatile
 SingularAttribute<Pool, String> style;
 public static volatile
 SingularAttribute<Pool, String> shape;
 public static volatile
 SingularAttribute<Pool, Double> length;
 public static volatile
 SingularAttribute<Pool, Double> width;
 public static volatile
 SingularAttribute<Pool, Double> radius;
 public static volatile
 SingularAttribute<Pool, Double> gallons;
 public static volatile

 SingularAttribute<Pool, Double> shallowDepth;
 public static volatile
 SingularAttribute<Pool, Double> deepDepth;
 public static volatile
 CollectionAttribute<Pool, Customer> customer;
}

There are two types of metamodel classes: canonical and
noncanonical. The class in Listing 3 shows a noncanonical
metamodel class, which is explicitly created by the applica-
tion developer. However, development of such a noncanoni-
cal metamodel class might compromise portability across JPA
providers. Each provider, in turn, is expected to generate a
canonical metamodel class for each entity. Therefore, unless
there is a good reason to develop the metamodel class, it
might be best to use the canonical class that is generated at
compilation time.

There are several ways to use the metamodel to achieve the
desired result. The CriteriaBuilder can be used to obtain a
number of Predicate or Expression objects that are used to
filter results. See the JavaDoc for more details. A Predicate
is used to set a boolean condition, and an Expression is
used to build the condition. In the case of our Pool entity,
suppose that we wanted to set a condition to retrieve all enti-
ties where the shape was rectangular. In this case, to set the
condition, use the CriteriaBuilder to obtain a Predicate
object, passing the expression that sets the condition to get
the Pool_.shape field, along with the value of the condition
("RECTANGLE") as the second argument. The Pool_.shape
reference is also known as a path expression.

Predicate condition =
 cb.equal(from.get(Pool_.shape), "RECTANGLE");

Note that if you were not using the Metamodel API, it would
be possible to produce the same Predicate by passing the
string-based name of the field within the condition, as shown

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

49

//enterprise java /

below. However, this would increase the potential for run-
time errors because the field name would not be checked
during compilation.

// Using a string-based field name
// Not the preferred approach
Predicate condition =
 cb.equal(from.get("shape"), "RECTANGLE");

After obtaining the Predicate, the CriteriaQuery can
then be altered by initiating a call to the where() method,
passing the Predicate. The where() method acts as a
modifier to the initial CriteriaQuery object, allowing
the query to be altered to set one or more conditions. The
CriteriaQuery also contains a number of other modifiers.
See the JavaDoc for more details.

cq.where(condition);

Lastly, obtain the TypedQuery object by calling upon the
EntityManager’s createQuery() method and passing the
CriteriaQuery object. Finally, obtain the ResultList from
the TypedQuery. Listing 4 shows the complete example code.

Listing 4.
CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery cq = cb.createQuery();
Root<Pool> from = cq.from(Pool.class);
Predicate condition =
 cb.equal(from.get(Pool_.shape), "RECTANGLE");
cq.where(condition);
TypedQuery<Pool> typedQuery = em.createQuery(cq);
return typedQuery.getResultList();

In the case where there is more than one condition that needs
to be applied to your query, simply create a new Predicate
and then pass to the CriteriaQuery.where() method each
of the Predicate objects separated by commas. Listing 5

demonstrates a query that returns all ROUND pools that
can hold more than 25,000 gallons of water. This particu-
lar listing certainly shows the benefits of the strongly typed
Criteria API.

Listing 5.
CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery cq = cb.createQuery();
Root<Pool> from = cq.from(Pool.class);
Predicate condition1 =
 cb.equal(from.get(Pool_.shape), "ROUND");
Predicate condition2 =
 cb.gt(from.get(Pool_.gallons), 25000);
cq.where(condition1, condition2);
TypedQuery<Pool> typedQuery = em.createQuery(cq);
return typedQuery.getResultList();

For instance, if you were to pass a String to the Criteria
Builder.gt() method, the compilation will fail because
it expects a numeric value. It is easy to reconstruct this
CriteriaQuery to make it more closely resemble SQL
or JPQL syntax, if you desire. Rather than passing the
Predicate conditions and calling upon the EntityManager
.createQuery() separately, we would perform these same
tasks using a builder pattern to produce a TypedQuery object.
Moreover, we can create a List of Predicates or conditions
to make the code more manageable. There are other methods
that can be invoked within the query builder chain to perform
ordering, capture distinct fields, and so forth. Listing 6 dem-
onstrates the same query that we used in Listing 5, but with
this streamlined syntax, and sorted by the number of gallons.

Listing 6.
CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery cq = cb.createQuery();
Root<Pool> from = cq.from(Pool.class);
List<Predicate> conditions = new ArrayList();
conditions.add(

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

50

//enterprise java /

 cb.equal(from.get(Pool_.shape), "ROUND"));
conditions.add(
 cb.gt(from.get(Pool_.gallons), 25000));
TypedQuery<Pool> typedQuery = em.createQuery(cq
 .select(from)
 .where(conditions.toArray(new Predicate[] {}))
 .orderBy(cb.asc(from.get(Pool_.gallons)))
);
return typedQuery.getResultList();

Performing Joins
Often, applications require queries that return data from
more than one database table or entity class. In the data-
base world, we would use SQL joins to relate records from
more than one table to each other. For instance, if we wanted
to retrieve all customers of the Acme Pool company that
had an INGROUND pool, we would join the POOL table with
the CUSTOMER table in the POOL_ID column, because each
CUSTOMER record contains a POOL_ID that relates to a model
of pool that is stored in the POOL table. Such a SQL statement
might look as follows:

select c.name
from customer c,
 pool p
where c.pool_id = p.pool_id
and p.style = 'INGROUND';

This query would return each customer’s name, where the
customer is on record as owning an INGROUND style pool. To
perform a similar join using the Criteria API, simply retrieve a
Root for the entity on which you would like to join, and then
invoke the Root.join() method, passing the path expres-
sion for the field on which you would like to perform the join.
This will return a Join object that you can then use within
a selection.

Root<Pool> pool = cq.from(Pool.class);
Join<Pool, Customer> poolCustomers =
 pool.join(Pool_.customer);

In Listing 7, you can see the complete code, where the same
join that was performed earlier using SQL is done using the
Criteria API.

Listing 7.
public List<Customer> ingroundPoolCustomers() {
 CriteriaBuilder cb = em.getCriteriaBuilder();
 CriteriaQuery<Customer> cq =
 cb.createQuery(Customer.class);

 Root<Pool> pool = cq.from(Pool.class);
 Join<Pool, Customer> poolCustomers =
 pool.join(Pool_.customer);

 TypedQuery<Customer> query = em.createQuery(
 cq.select(poolCustomers)
 .where(cb.equal(pool.get(Pool_.style),
 "INGROUND"))
);
 return query.getResultList();

}

The Criteria API’s Latest Features
In my earlier article on the new features in JPA, I briefly cov-
ered some features that were added to the Criteria API with
the release of JPA 2.1 (in Java EE 7): bulk updates and bulk
deletions. Now, I want to cover these new features in more
detail. In JPA 2.1, the CriteriaUpdate and CriteriaDelete
objects were added to the API, and the CriteriaBuilder
was extended so that it could be used to produce these objects
for performing bulk update and delete operations. Let’s
examine these.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

51

//enterprise java /

Bulk updates. In some instances, it makes sense to apply an
update to a large number of database records. Perhaps you
need to update the cost for all customers in a particular city
due to material increases, or maybe all customers with a spe-
cific pool style need to be updated to enable or disable main-
tenance due status. In the following example, I use the latter
scenario so that all customers of a specified pool type will
have maintenance either enabled or disabled when the update
is executed.

To perform a bulk update, use a CriteriaBuilder to
generate a CriteriaUpdate object that is set to the type of
entity you want to update. In the following example, I want
to update the Customer entity, so I call the Criteria
Builder.createCriteriaUpdate() method, passing it
the Customer.class:

CriteriaUpdate<Customer> customerUpdate
 = builder.createCriteriaUpdate(
 Customer.class);

The CriteriaUpdate object can then be used to indicate
which field(s) of the entity will be updated, and under which
conditions the update will occur.

In the following example, I am using a Join<Customer,
Pool> object identified as poolCustomers to retrieve the
style of pool that each customer owns. Therefore, I call the
CriteriaUpdate set() method, passing the path expres-
sion to the fields I want to update, along with the values to
set. Next, I call the where() method, which specifies the
conditions under which the update is applied. Once again, I
can use the builder pattern:

customerUpdate.set(
 customer.get(Customer_.currentMaintenance),
 enabled)
 .where(
 builder.equal(

 poolCustomers.get(Pool_.style),
 poolStyle);

Once all of the appropriate fields have been set and conditions
have been put into place, I create a Query object by calling the
EntityManager createQuery() method and passing the
customerUpdate:

Query q = em.createQuery(customerUpdate);

Lastly, I invoke the executeUpdate() method to execute the
update. The complete listing for this bulk update example is
shown in Listing 8.

Listing 8.
public void updateMaintenanceByPoolType(
 String poolStyle, boolean enabled) {
 CriteriaBuilder builder =
 em.getCriteriaBuilder();
 CriteriaUpdate<Customer> customerUpdate =
 builder.createCriteriaUpdate(
 Customer.class);
 Root<Customer> customer =
 customerUpdate.from(Customer.class);

 Join<Customer, Pool> poolCustomers =
 customer.join(Customer_.pool);

 customerUpdate.set(
 customer.get(
 Customer_.currentMaintenance), enabled)
 .where(builder.equal(
 poolCustomers.get(Pool_.style),
 poolStyle));
 Query q = em.createQuery(customerUpdate);
 q.executeUpdate();
 em.flush();
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

52

//enterprise java /

Bulk deletions. There might be a circumstance in which it is
appropriate to delete more than one record from a database
in a single invocation. A bulk update can be performed in
such cases, eliminating the need to perform multiple sepa-
rate deletions using a looping mechanism, as was done in the
past. For instance, suppose the Acme Pools company wanted
to delete all customers whose pool size is greater than a set
number of gallons. This would be a perfect case for using the
bulk deletion feature.

In much the same way that bulk updates are implemented,
a bulk deletion can be performed via a CriteriaDelete
object. In this case, we would like to create a Criteria
Delete object of the Customer type, as follows:

CriteriaDelete<Customer> customerDelete
 = builder.createCriteriaDelete(
 Customer.class);

Because there are no values to set for a deletion, Criteria
Delete is simpler to use than CriteriaUpdate. To perform
the deletion, call the where() method, passing the condi-
tions that must be met for the deletion to occur. In this case,
the number of gallons in the customer’s pool must be more
than the threshold. So, the CriteriaBuilder gt()
method is called, passing the path expression to the Pool_
.gallons field, along with the gallons threshold as the
second argument:

customerDelete
 .where(builder.gt(poolCustomers.get(
 Pool_.gallons),
 gallons));

Once again, simply create a query from the CriteriaDelete
object, and then invoke the executeUpdate() method
to perform the deletion. Listing 9 shows the code for
this example.

Listing 9.
public void
 removeCustomerByGallons(double gallons) {
 CriteriaBuilder builder =
 em.getCriteriaBuilder();
 CriteriaDelete<Customer> customerDelete =
 builder.createCriteriaDelete(Customer.class);
 Root<Customer> customer =
 customerDelete.from(Customer.class);

 Join<Customer, Pool> poolCustomers =
 customer.join(Customer_.pool);

 customerDelete
 .where(builder.gt(
 poolCustomers.get(Pool_.gallons),
 gallons));
 Query q = em.createQuery(customerDelete);
 q.executeUpdate();
 em.flush();
}

Diving Deeper into the Criteria API
In the world of databases and SQL, there are several other
operations and query options that can be used to produce the
desired result. One example is the use of aggregate functions
for performing calculations on data, and another example
is fetching only distinct values. Moreover, SQL queries can
include subqueries to be used for filtering results. All of these
options are also available in the Criteria API.

Most of the aggregate functions can be performed by call-
ing the CriteriaBuilder object, whereas ordering and
grouping functionality can be done with a CriteriaQuery
object. Such operations can be addressed using the same
builder pattern that I’ve used throughout the examples in
this article.

Because subqueries use a somewhat different syntax, let’s
take a look at a quick example. Suppose that we want to query

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

53

//enterprise java /

all Acme Pools customers that contain a discount code, where
the discount rate is higher than a specified amount. A stan-
dard SQL query for this situation might look as follows:

select *
from customer
where discount_code in
 (select discount_code
 from discount_code where rate > 7.00);

Now let’s use the Criteria API to construct this same sub-
query. The Subquery object comes into play when working
with subqueries. Much of the query is written in the same
manner as others we’ve seen, but in this case, two separate
queries are written and then combined to produce the result.
Listing 10 demonstrates how to perform a subquery.

Listing 10.
CriteriaBuilder criteriaBuilder =
 em.getCriteriaBuilder();
CriteriaQuery<Customer> criteriaQuery =
 criteriaBuilder.createQuery(Customer.class);
Root<Customer> from =
 criteriaQuery.from(Customer.class);

CriteriaQuery<Customer> select =
 criteriaQuery.select(from);

Subquery<DiscountCode> subquery =
 criteriaQuery.subquery(DiscountCode.class);
Root fromDiscountCode =
 subquery.from(DiscountCode.class);

subquery.select(fromDiscountCode.get(
 DiscountCode_.discountCode))
 .where(criteriaBuilder.gt(
 fromDiscountCode.get(DiscountCode_.rate),
 7000));
select.where(criteriaBuilder.in(

 from.get(Customer_.discountCode))
 .value(subquery));

TypedQuery<Customer> typedQuery =
 em.createQuery(select);
return typedQuery.getResultList();

Conclusion
The Java Persistence API is the foundation for performing
database operations within a standard Java EE 7 applica-
tion. Although there are a variety of ways to work with data,
the Criteria API is the only one that allows the construc-
tion of type-safe queries, eliminating many of the runtime
errors that occur from incorrect String queries. The API can
be used to build complex queries and perform bulk opera-
tions, the latter of which are new features in the latest release
of JPA. </article>

Josh Juneau works as an application developer, system ana-
lyst, and database administrator. He authored Java EE 7 Recipes,
Introducing Java EE 7, and JavaServer Faces: Introduction by
Example (all from Apress). He also produced a video course entitled
Mastering PrimeFaces (Packt Publishing, 2015).

The complete source code on GitHub for the
AcmePools application
Java EE 7 tutorial
CriteriaQuery documentation
CriteriaBuilder documentation

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/juneau001/AcmePools-JPA
http://docs.oracle.com/javaee/7/tutorial/
https://docs.oracle.com/javaee/7/api/javax/persistence/criteria/CriteriaQuery.html
http://docs.oracle.com/javaee/7/api/javax/persistence/criteria/CriteriaBuilder.html

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

54

//jvm languages /

I started writing what would become the Golo programming
language in the summer of 2012. I was working on dynamic

software modifications with my research colleagues, and we
had proposed a JVM agent called JooFlux to inject changes
and aspects into Java programs on the fly. It was based on
JSR 292 (support for dynamic languages on the JVM) and the
invokedynamic bytecode instruction. I ended up experiment-
ing a lot with this bytecode trying to facilitate the design of
dynamically typed languages on top of the JVM.

As I studied existing JVM languages that lacked invoke
dynamic, I thought it would be a good idea to create a lan-
guage that has simple and easy-to-understand compiler and
runtime codebases to enable experimenting with language
advances, such as new bytecodes. Fast-forward a few years
and Golo is now an incubating Eclipse Technology project
where hobbyists who have no prior language development
experience contribute to its development, and research deriv-
atives have been based on it.

This article provides a tour of some of the features of the
Golo programming language. It does not cover all the fea-
tures, yet it should give you a good start.

A Verbose Start
Golo is a dynamically typed language. It supports imperative
and functional idioms, and it integrates nicely with Java. To
illustrate that, let me start with a simple program that cre-
ates a java.util.ArrayList from the Java standard APIs,
and then iterates over the elements to print them. The con-
structions are deliberately close to what you would write in

Java, but I will soon show how to make them more concise.

module javamag.Hello

import java.util

A comment
function main = |args| {
 let elements = ArrayList()
 elements: add("Hello")
 elements: add("world")
 elements: add("!")
 let size = elements: size()
 for(var i = 0, i < size, i = i + 1) {
 print(elements: get(i))
 if (i < size - 1) {
 print(" ")
 }
 }
 println("")
}

The code above demonstrates a few things:
■■ The code is a module, which is the compilation unit in Golo.
■■ import statements help resolve symbols.
■■ Function parameters are passed between pipe symbols (|).
■■ There is no new operator for creating instances of Java

classes; instead, the constructors are called as functions.
■■ let defines constant references, and var defines variable

references.
■■ Instance methods are called using the : operator, as in

JULIEN PONGE

PHOTOGRAPH BY
MATT BOSTOCK/GETTY IMAGES

Golo
A fast, low-ceremony, easy-to-learn language for the JVM

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://golo-lang.org/

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

55

//jvm languages /

elements: size(), which calls the size method on the
elements object. (The space after the colon is idiomatic,
not mandatory.)

■■ Comment lines start with a # symbol.
■■ A Golo module can provide a main function as an entry

point, which takes exactly one argument that is expected to
be an array of command-line arguments, just like the main
method in Java.

It is important to note that import statements are purely
symbolic and are not checked at compile time. Had
import java been used instead of import java.util,
the code would have called the ArrayList constructor as
util.ArrayList().

Golo provides a unique golo command-line tool. It also
provides several subcommands, including compile, run, and
golo. Compiling and then running the above program is as
simple as the following:

$ golo compile hello-1.golo
$ ls javamag/
Hello.class
$ golo run --classpath . --module javamag.Hello
Hello world !
$

The golo subcommand compiles source code in memory,
rather than to files, and then executes a module, which is by
default the last .golo file:

$ golo golo --files hello.golo
Hello world !
$

Reducing Verbosity
Golo provides collection literals for creating lists, arrays,
vectors, tuples, maps, sets, and ranges:

[1, 2, 3]
list[1, 2, 3]
map[[1, "a"], [2, "b"]]
[1..10_000]
...

These options allow me to revisit the previous example and
introduce a foreach loop:

let elements = vector["Hello", "world", "!"]
foreach e in elements {
 print(e + " ")
}
println("")

Note that the foreach loop supports conditional guards with a
when clause. The following example uses a range (the double
dots) and prints only the odd numbers:

let ints = [1..100]
foreach i in ints {
 if i % 2 == 0 {
 println(i)
 }
}

The previous example can be rewritten using when:

let ints = [1..100]
foreach i in ints when i % 2 == 0 {
 println(i)
}

Golo provides collection comprehensions for all collection liter-
als. This feature is reminiscent of the Python programming
language, and here is a simple example:

let odds = [i foreach i in [1..100] when i % 2 == 0]
println(odds)

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

56

//jvm languages /

The previous code defines a tuple of the odd integer numbers
between 1 and 100. As you can see, embedding a foreach
clause that may also contain a when guard does this.

There can also be several foreach clauses, as the next
example shows. It generates a collection of pairs of integers,
expressed as a tuple of tuples:

let pairs = [[i * 2, j * 3]
 foreach i in odds when (i >= 30) and (i <= 50)
 foreach j in [10..20] when j % 2 == 1]
println(pairs)

Golo also supports destructuring of its data types and
collections:

let l = list["1", "2", "3", "4"]
let a, b = l
let head, second, tail... = l

let m = map[["a", 123], ["b", 456]]
foreach key, value in m: entrySet() {
 # ...
}

In the two examples above, a would be value "1", and b would
be value "2". Similarly head, second, and tail would be,
respectively, "1", "2", and list["3", "4"]. Destructuring
is also useful when dealing with map entries and decomposes
them as pairs of keys and values (a Golo map[...] literal
yields a java.util.HashMap).

Higher-Order Functions
Like most recent programming languages, Golo supports
higher-order functions. This means that functions can accept
functions as parameters and return functions.

Given a function declared in a module, you can obtain a
reference to it using the ^ operator. Once a reference has been

assigned to a function value, calls can be made to it, as in the
following example:

module Foo

function hello = {
 println("Hello!")
}

function main = |args| {
 let f = ^hello
 f() # prints "Hello!"
}

Of course, direct function declarations can be made, as in
the following:

let f = |str| {
 println(">>> " + str)
}
f("Hello!") # prints ">>> Hello!"

Also, functions that consist of a single expression can be
expressed using the shorthand -> notation:

let f = |str| -> println(">>> " + str)
f("Hello!") # prints ">>> Hello!"

Function references have methods that allow them to be
manipulated, mainly to perform operations such as partial
application and composition. The provided methods closely
mimic those of the java.lang.invoke package APIs. Let’s
look at the following example:

let add = |a, b, c| -> a + b + c
let times = |a, b| -> a * b

let add_1_and_2 = add: insertArguments(0, 1, 2)

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

57

//jvm languages /

let twice = times: bindTo(2)
let f = add_1_and_2:
 andThen(twice):
 andThen(|n| -> println(n))

prints "12"
f(3)

Now let’s step through the code. add_1_and_2 is the result
of doing a partial application of the arguments of add start-
ing at position 0, which means that a and b get fixed to 1
and 2. The resulting function takes a single argument, which
is then passed as the argument c of the original add func-
tion. bindTo also performs partial application, except that
it applies to a single value on the first parameter. andThen
composes functions; here f first adds 1 and 2 to the single
argument, then passes the result to twice, and then passes it
to the anonymous function that prints the result.

Another interesting feature of Golo functions is that they
support named arguments:

function startServer(address, port, options) {
 # (...)
}

function run = {
 # (...)
 startServer(
 port=8080,
 options=list["--watch", "--verbose"],
 address="0.0.0.0")
}

Named arguments are useful for clarifying the purpose of
the parameters while using certain APIs. They also allow the
order of the parameters to be different from that of the func-
tion declaration. All Golo functions, including anonymous
functions, allow invocations with named arguments.

It is also worth noting that Golo can use named argu-
ments on Java class methods. There is one limitation,
though: classes need to have been compiled with the
javac -parameters flag activated, which is, sadly, not
the case by default.

Golo Functions and Java Functional Interfaces
Although lambdas were added only in Java 8, the language
and platform have long relied on single-method interfaces.
Typical examples include passing a Runnable instance to
a Thread constructor or passing an ActionListener to a
Swing component.

To explore a concrete example, let’s use the java.util
.concurrent.CompletableFuture class that was added
in Java 8:

module SmiAndLambda

import java.util.concurrent.CompletableFuture

function main = |args| {
 supplyAsync(-> 1):
 thenApply(|n| -> n + 99):
 thenAcceptAsync(|n| -> println(">>> " + n)):
 join()
}

The code above creates a CompletableFuture by asynchro-
nously executing a first function that does nothing inter-
esting but returns 1. It then applies another function that
increments the result of the first call by 99, and then asyn-
chronously executes another function that prints out the
result (>>> 1000).

The supplyAsync method from CompletableFuture
accepts a java.util.function.Supplier, which is a
single-method interface. The thenApply method expects
a java.util.function.Function, which is a functional

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

58

//jvm languages /

interface (that is, it has a single abstract method in conjunc-
tion with default methods). Similarly, thenAcceptAsync
expects a java.util.function.Consumer, which is also a
functional interface.

The Golo runtime automatically adapts function references
to both Java single-method and functional interfaces.

Structures
Golo provides structured data definitions using the struct
declaration, as in the following:

struct Message = { id, date, payload }

A structure object has a constructor, getter and setter acces-
sors, as well as sensible equals(), hashCode(), and
toString() methods. Here is a sample usage of the Message
structure definition above:

let m = Message(
 id=12345,
 date="2016-01-22 15:41 CEST",
 payload="""I hope this message finds you well.

Yours sincerely,

- Julien""")

println(m)
m: id(6789)
println(m: id())

The code above would print:

struct Message{id=12345, date=2016-01-22 15:41 CEST,
payload=I hope this message finds you well.

Yours sincerely,

- Julien}
6789

Note that """ defines multiline strings in Golo.
Immutable copies of a struct object can be made by calling

the frozenCopy() method. Every structure also comes with
a constructor for making immutable objects: the name of the
constructor function is prefixed by Immutable. In the previ-
ous example, we could have constructed m as immutable by
calling ImmutableMessage rather than Message. This would
also cause the m: id(6789) call to fail because m would
be immutable.

Structure fields have public visibility by default. Given a
module importing the module that defined the Message
structure above, the module would have access to all
fields through their accessors (for example, id() and
id(newValue)). It is possible to restrict visibility by prefixing
fields with an underscore. Any such field is visible only from
within its defining module code, and remains hidden from
other modules.

Finally, structure objects can be destructured and enumer-
ated. This makes it possible to write the following:

let id, date, payload = m
println(id)
println(date)
println(payload)

foreach field, value in m {
 println(field + " -> " + value)
}

Tagged Unions
As a complement to structure types, Golo supports tagged
unions, sometimes also called sum algebraic data types. Here is
an example defining a Figure type:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

59

//jvm languages /

union Figure = {
 Nothing
 Square = { sideLength }
 Rectangle = { firstSideLength, secondSideLength }
 Circle = { radius }
}

With this definition, a Figure can be of the Nothing,
Square, Rectangle, or Circle concrete type. Each type can
have (immutable) fields and a constructor. Here is the cre-
ation of a tuple with several Figure instances:

let figures = [
 Figure.Square(23),
 Figure.Rectangle(firstSideLength=10,
 secondSideLength=20),
 Figure.Circle(30),
 Figure.Nothing()
]

Given each concrete type of Figure, methods are being
provided to check whether an instance is of a given type:
f: isSquare(), f: isCircle(), and so on. The following
example illustrates how to use these methods. It also intro-
duces the match operator that iteratively evaluates several
conditions with when/then/otherwise clauses and returns
a value:

println(figures: map(|f| -> match {
 when f: isRectangle()
 then
 "[" +
 f: firstSideLength() +
 ", " +
 f: secondSideLength() +
 "]"
 when f: isSquare()
 then "[" +
 f: sideLength() + "]"

 when f: isCircle()
 then "(" +
 f: radius() + ")"
 otherwise "."
}): join("\n"))

Golo collections provide functional idioms such as map (to
create a new collection by applying a function to its ele-
ments) and join (to produce a string by concatenating ele-
ments with a separator). Running the code above prints the
following text:

[23]
[10, 20]
(30)
.

It is also possible to test instances not just for their type, but
also for values:

false
println(Figure.Square(23): isSquare(20))

true
println(Figure.Square(23): isSquare(23))

Because we might be interested in only a subset of a union
of type fields, we can use the special Unknown.get() value
to indicate that the value of certain fields is not useful
for matching:

let figs = [
 Figure.Rectangle(10, 10),
 Figure.Rectangle(10, 30),
 Figure.Rectangle(30, 30),
 Figure.Circle(20)
]
let _ = Unknown.get()

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

60

//jvm languages /

println(figs: filter(|f| -> match {
 when f: isRectangle(10, _)
 then true
 otherwise
 false
}): join("\n"))

Starting with the figs collection, we can use filter to dis-
card the figures that are not rectangles whose first side has a
value of 10, and then print the result:

union Figure.Rectangle{firstSideLength=10,
 secondSideLength=10}
union Figure.Rectangle{firstSideLength=10,
 secondSideLength=30}

Augmentations
Golo does not provide constructions for defining classes,
but it provides a way to add methods to any type that it can
manipulate. This includes class definitions from Java APIs
and also Golo struct and union types. An augmentation
defines a set of functions that can be called as methods. The
convention for these functions is to call this as the first
parameter because it references the receiver object, but you
are free to use a different name.

Augmentations can be defined by specifying a type:

augment java.lang.String {

 function wrap = |this, s1, s2| ->
 s1 + this + s2

 # (... more methods can be added)
}

The code above adds a wrap method to Java String instances.
For example, the following code would give "{abc}".

"abc": wrap("{", "}")

An augmentation applies to a type and all its subtypes; an
augmentation on java.lang.Object would apply to every
type. An augmentation is visible from its defining module
and the modules that import this module.

The other way to define an augmentation is by name rather
than by a target type:

augmentation Wrap = {
 function wrap = |this, s1, s2| ->
 s1 + this: pretty() + s2
}

augmentation PrettyContact = {
 function pretty = |this| ->
 this: name() + " <" +
 this: email() + ">"
}

With these two named augmentation definitions, we can
compose and then augment the following struct type:

struct Contact = { name, email }

augment Contact with Wrap, PrettyContact

We can then use the augmented type as follows:

let dan = Contact("Dan", "dan@tld")
println(dan: pretty())
println(dan: wrap("/* ", " */"))

The code above prints:

Dan <dan@tld>
/* Dan <dan@tld> */

The advantage of named augmentations over augmentations

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

61

//jvm languages /

on types is that you avoid code duplication when augmenting
several, possibly unrelated, types.

Generating Adapter Classes
While Golo has few issues when calling Java APIs, there are
cases when these APIs expect arguments to be objects that
extend certain interfaces or base classes. Golo provides an
API to generate adapter classes. An adapter class extends a
base class, implements a set of interfaces, and overrides and
implements methods.

The Adapter API is available through the gololang
.Adapters import statement, and then it can be used to
create objects such as the following one:

let obj = Adapter():
 extends("java.lang.Object"):
 interfaces([
 "java.io.Serializable",
 "java.util.Enumeration"]):
 implements("hasMoreElements",
 |this| -> true):
 implements("nextElement",
 |this| -> 100):
 overrides("toString",
 |this, super| -> "Strange!"):
 newInstance()

println(obj: getClass())
println(obj: getClass():
 getInterfaces():
 toString())
println(obj: hasMoreElements())
println(obj: nextElement())
println(obj: toString())

Executing the code above prints:

class $Golo$Adapter$0

[interface gololang.GoloAdapter,
 interface java.io.Serializable,
 interface java.util.Enumeration]
true
100
Strange!

The API performs soundness verifications (for example, it
checks that all interface methods are being implemented)
and dynamically generates the adapter class as JVM bytecode.
Instead of method names, it is also possible to use * so that
a single function can implement many methods or override
all methods. The Golo documentation has examples of using
adapters for dynamically generating proxies.

Calling Golo from Java
Calling Golo from Java is usually very easy. There are two
options: direct invocations and code evaluations.
Direct invocations. The first option is to compile Golo source
files, and add the generated bytecode plus the Golo runtime
JAR file and dependencies to the Java application classpath.
From the point of view of a Java class, a Golo module is a class
with static methods. Given the following module:

module my.great.Module

struct Point = {x, y}

function a = |n| -> n + 1
function b = |a, b| -> a * b

The javap decompiler reveals the following public methods:

$ javap my.great.Module
Compiled from "compil.golo"
public class my.great.Module {
 public static java.lang.String[] $imports();
 public static java.lang.String[] $augmentations();

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

62

//jvm languages /

 public static java.lang.String[]
 $augmentationApplications();
 public static java.lang.String[]
 $augmentationApplications(int);
 public static java.lang.Object
 a(java.lang.Object);
 public static java.lang.Object
 b(java.lang.Object, java.lang.Object);
 public static java.lang.Object Point();
 public static java.lang.Object
 Point(java.lang.Object, java.lang.Object);
 public static java.lang.Object
 ImmutablePoint(java.lang.Object,
 java.lang.Object);
}

[Indented lines are wrapped from the previous line. —Ed.]
Methods such as a or Point can be called “as is” from Java.
The methods prefixed with $ are used by the Golo runtime.
Code evaluation. Another option is to use the gololang
.EvaluationEnvironment class that is part of the Golo run-
time. It provides various means to pass Golo code as strings,
and either evaluate or execute them.

Here is an example usage of that class from Java:

package sample;

import gololang.EvaluationEnvironment;
import gololang.FunctionReference;

public class GoloFromJava {

 public static void main(String[] args)
 throws Throwable {
 EvaluationEnvironment env =
 new EvaluationEnvironment();

 FunctionReference f1 =
 (FunctionReference) env.def(

 "|a, b| -> println(a + \" ~ \" + b)");
 f1.invoke("hello", "world");

 FunctionReference f2 = (FunctionReference)
 env.asFunction("println(a + b)", "a", "b");
 f2.invoke(5, 10);
 }
}

The code above prints the following:

hello ~ world
15

The EvaluationEnvironment class provides additional
methods for evaluating Golo code, such as evaluating the whole
module source code from text, defining imports, and more.

Conclusion
This article introduced some interesting features of the Golo
programming language. There is, of course, more to the lan-
guage, and I encourage you to go further by experimenting
with it. If you have always wondered how programming lan-
guages could be implemented, you might also enjoy looking at
the source code: I generally do my best to ensure that it pro-
vides significant pedagogical value.

Last but not least, Golo is a language that is friendly to hob-
byists. Do not hesitate to propose contributions! </article>

Julien Ponge (@jponge) is a longtime open source contributor
who is currently an associate professor of computer science and
engineering at INSA de Lyon, France. He focuses his research on
programming languages, virtual machines, and middleware.

The author would like to thank the contributors of Golo, and
especially Yannick Loiseau, Sylvain Desgrais, Daniel Petisme, and
Philippe Charrière, who influenced the design and implementation
of some language features.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

63

//fix this /

I hope you like the new format of these quizzes with
longer and deeper explanations of the answers. Here are

some more questions that simulate those from the 1Z0-809
Programmer II exam.

Question 1. Given this code:
public enum Suit { // line n1
 HEART, DIAMOND, SPADE, CLUB; // line n2
 private Color color; // line n3
 public final Suit(Color color) { // line n4
 this.color = color;
 }
}

Which two changes are necessary to enable the code to compile?
Choose two.
a. Remove the keyword public from line n4.
b. Remove both the keywords public and final from line n4.
c. Remove the keyword public from line n1.
d. Change line n2 to this:

HEART(Color.RED), DIAMOND(Color.RED),
 SPADE(Color.BLACK), CLUB(Color.BLACK);

e. Change line n2 to this:
new HEART(Color.RED), new DIAMOND(Color.RED),
 new SPADE(Color.BLACK), new CLUB(Color.BLACK);

Question 2. You are creating a method that performs I/O
operations that might throw an IOException. The I/O code is
omitted from the fragments below, but it is assumed to occur
at the location marked // ...

The FileReader constructor is declared as throws

Quiz Yourself
More questions from an author of the Java certification tests

FileNotFoundException. The FileNotFound
Exception is a subclass of IOException. The code should
respond to either exception by logging the exception and
then rethrowing it to the caller.
Which code satisfies the requirements?
a.
try (BufferedReader br =
 new BufferedReader(new FileReader(fName));) {
 // ...
} catch (IOException e) {
 LOG.warning(()->e.getLocalizedMessage());
 throw e;
} catch (FileNotFoundException e) {
 LOG.warning(()->e.getLocalizedMessage());
 throw e;
}
b.
try (BufferedReader br =
 new BufferedReader(new FileReader(fName));) {
 // ...
} catch (FileNotFoundException e) {
 LOG.warning(()->e.getLocalizedMessage());
 throw e;
} catch (IOException e) {
 LOG.warning(()->e.getLocalizedMessage());
 throw e;
} finally {
 br.close();
}
c.
try (BufferedReader br =
 new BufferedReader(new FileReader(fName));) {

SIMON ROBERTS

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

64

//fix this /

 // ...
} catch (IOException e) {
 LOG.warning(()->e.getLocalizedMessage());
 throw e;
}
d.
try (BufferedReader br =
 new BufferedReader(new FileReader(fName));) {
 // ...
} catch (IOException | FileNotFoundException e) {
 LOG.warning(()->e.getLocalizedMessage());
 throw e;
}
e.
try (BufferedReader br =
 new BufferedReader(new FileReader(fName));) {
 // ...
} catch (IOException | FileNotFoundException e) {
 LOG.warning(()->e.getLocalizedMessage());
 throw e;
} finally {
 br.close();
}

Question 3.Assume that the class Fruit is accessible
and defines a JavaBeans-style accessor method with the
following prototype:
public String getColor()

Given that sf is a nonempty Stream<Fruit> and given this
code fragment:
System.out.println(
 // line n1
 .filter("yellow"::equalsIgnoreCase)
 .count());

Which of the following, when inserted at line n1, causes the frag-
ment to output the total number of yellow fruits in the stream?

a. sf.filter(f->f.getColor()
 .equalsIgnoreCase("yellow"))

b. sf.flatMap(f->f.getColor())
c. sf.reduce(f->f.getColor())
d. sf.map(Fruit::getColor)
e. None of these

Question 1. The correct answers are Options B and D. A sig-
nificant part of the purpose of an enumerated type is to
ensure that a specific set of instances, defined at compilation
time, exists while the program is running. The only reason to
provide access to a constructor is to allow the creation of new
instances. Because new instances of an enum would break the
expectations of the enum, there’s no reason to allow access
to the constructors. Consequently, as one of several measures
to prevent such inconsistency, enum constructors must be
private. A default constructor for an enum always will be
private, and any constructor that lacks an explicit accessi-
bility keyword will also be private. If an access control key-
word is provided, it must be private.

Section 8.9 of the Java Language Specification states, “An
enum type has no instances other than those defined by
its enum constants. It is a compile-time error to attempt to
explicitly instantiate an enum type.” Section 8.9.2 notes,
“In an enum declaration, a constructor declaration with no
access modifiers is private.” Finally, section 8.9.3 says, “It is
a compile-time error if a constructor declaration in an enum
declaration is public or protected.”

Answers

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.9
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.9.2
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.9.3

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

65

//fix this /

Given this, it’s clear that the public modifier must be
removed from the constructor. However, while this is neces-
sary, it is not sufficient. Let’s see why. In general, construc-
tors may not be final (they are not inherited, so it makes no
sense to use this modifier).

Section 8.8.3 states, “Unlike methods, a constructor can-
not be abstract, static, final, native, strictfp, or
synchronized.”

So, this tells you that it’s necessary to remove both the
public and final keywords from the constructor. The only
option that provides for this requirement is Option B, so this
must be part of the correct answer. This solution also elimi-
nates Option A.

Option C calls for removing the public keyword from the
enum class as a whole. This is unnecessary; it’s perfectly cor-
rect to have a public enum.

Section 8.1.1 mentions that the class modifiers of a normal
class may include public. Later, section 8.9 modifies the
information to be specific to enums. It prohibits abstract
and final, but it does not prohibit the others, ensuring
that public is acceptable. Because of this, Option C must
be incorrect.

Lastly, when an explicit constructor is defined for any class,
the default constructor is not generated by the compiler
(section 8.8.9). Because of this, line n2, as shown in the origi-
nal, will not compile. This is because the format it uses has
no parentheses and no argument lists; therefore, it attempts,
unsuccessfully, to invoke that missing default constructor.
Section 8.9.1 notes that when an argument list is provided,
these arguments are “passed to the constructor of the enum.”
It also notes that normal overload-matching rules will be
applied. Because of this and the format specified in this same
section, the proper format for the invocation is as shown in
Option E. The form in Option E that uses a new keyword is a
syntax error. Because of this, Option D is the second correct
option, and Option E is wrong.

Note for certification exam students: You might wonder
how an item can be correct when it refers to Color.RED and
Color.BLACK in the argument to the constructor, but it does
not define or import any Color class.

In the interest of keeping the amount of code you have to
examine within reasonable limits, Oracle has documented
some assumptions that should be made when consider-
ing a question. These are listed on the exam information
pages. In particular, the following assumptions are men-
tioned explicitly. “Missing package and import statements:
If sample code does not include package or import state-
ments, and the question does not explicitly refer to these
missing statements, then assume that all sample code is in
the same package, and import statements exist to support
them.” Given this, it’s clear that it’s proper to assume that
some class Color exists, and it provides for these constants.
If you’re unfamiliar with it, this is probably the original
java.awt.Color class, but such detail isn’t important here.

Most of the notes that Oracle has provided might be consid-
ered obvious. That is, if you didn’t make these assumptions,
many questions would have no plausible answer. However, it’s
nice that they’re now called out explicitly, so you don’t have to
worry if you’re making an unreasonable assumption. You can
find these notes on the pages of each relevant exam, usually
by selecting the Exam Topics tab that’s about halfway down.

Question 2. The correct answer is Option C. FileNotFound
Exception is a subclass of IOException. Where exceptions
in a class hierarchy are both being caught explicitly—such
as in Option A—the more-specific exception must be posi-
tioned earlier in the list than the more-general exception.
This ordering rule exists because execution will jump to the
first catch block that is applicable (section 14.20.1 of the
Java Language Specification), and if the more-general were
first, the more-specific would never be executed. In Option
A, this rule is broken; hence, the code fails to compile and

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.8.3
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.1.1
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.9
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.8.9
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.9.1
https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html#jls-14.20.1

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

66

//fix this /

is, therefore, incorrect.
It’s perhaps interesting to note that in earlier versions of

Java, that’s exactly what happened, leading to some poten-
tially hard-to-find bugs. Today, section 14.21 identifies such
a situation as unreachable code and requires the compilation
error that we’re used to now.

In Option B, the ordering of the catch blocks has been
corrected; however, an explicit finally block has also been
added. It’s OK to have a finally block, but the scope of the
resource variable br (the BufferedReader) is limited to the
parentheses following the try statement and the block that
follows it. Consequently, the attempt to explicitly close br in
the finally block fails to compile. Of course, the whole point
of the try-with-resources structure is to close the resources
implicitly, so attempting to close br explicitly like this is
misguided, too.

Option C works just fine, and turns out to be the correct
answer. Because the FileNotFoundException is a subclass
of IOException, they’ll both be caught in the single catch
block provided, and they will be treated as the specification
demands. It’s perhaps worth discussing that if I wanted dif-
ferent handling for these two exceptions, or if I wanted the
same handling for two exceptions that did not share a parent/
child relationship, this wouldn’t be a good solution. But that’s
not the situation in this question.

Option D might look tempting, using the newer (Java 7)
multi-catch syntax. However, it fails because the two excep-
tions share a parent/child relationship. This code actually
creates a compilation error. Section 14.20 notes, “It is a
compile-time error if a union of types contains two alter-
natives Di and Dj (i ≠ j) where Di is a subtype of Dj.”
That’s a bit of a mouthful, but in essence it simply excludes
using the multi-catch syntax with exception types, such as
IOException and FileNotFoundException, that have an
inheritance relationship.

Option E fails for the same reasons as both Options D and B.

A couple of side notes: First, I think a good case could be
made that the exam might not explicitly tell you about the
inheritance relationship between these two exceptions, given
how common they are, and how many other objectives hint at
knowing this kind of detail.

Second, you’ll notice that there’s a lot of code in this exam-
ple. While questions of this size are not common, you will
sometimes come across them. It’s not a bad skill to practice
keeping a clear head and making an organized search to look
for particular points. After all, production code isn’t always
written and maintained in the best conventions of clean
code either!

Question 3. The correct answer is Option D. For this fragment
to output the number of occurrences of yellow fruits, the
stream that feeds into the count method (which is itself the
output of the filter method) must contain one element for
each yellow fruit in the original stream. It doesn’t particularly
matter what that element is, of course.

The filter method that is already in place will pass
through only those elements which are strings that match
(ignoring case) the text "yellow". This means that the
stream that enters the filter method must contain only
the color names of the original Fruit objects, not the Fruit
objects themselves.

The method in the Stream interface that allows you to
convert the contents of a stream—either the values or the
data type—while maintaining a one-to-one correspondence
between input and output items is map. Option D does this,
and is correctly formed, using a method reference to the
getColor method to take a Fruit object from the input
stream and extract the color name. That, as was just dis-
cussed, is what’s needed for this code to behave as required.
So, Option D is correct.

Option A would work if it replaced the existing filter
statement. This statement would result in the yellow Fruit

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html#jls-14.21
https://docs.oracle.com/javase/specs/jls/se8/html/jls-14.html#jls-14.20

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

67

//fix this /

objects proceeding down the stream. If counted directly, we’d
get the desired result, but, as the code stands, the down-
stream filter would fail to compile because it’s receiving
whole Fruit objects, rather than color names.

Option B would not compile, because the return type of
the behavior provided as the argument to flatMap must be
a stream of some kind. It’s interesting to note, however, that
if the option had been sf.flatMap(f->Stream.of(
f.getColor())), then—although horribly inefficient and
cumbersome—it would have worked correctly.

Option C also fails to compile and is essentially nonsense.
The reduce method of Stream is a terminal operation that
collects all the values coming down the stream and produces
a single output value. The behavior argument to the reduce
method performs the computations that create that single
output value. Clearly, that’s not what’s needed here anyway.
Further, the behavior argument to the single-argument
reduce method is a BinaryOperator, and the lambda f->
f.getColor() is effectively a Function<Fruit, String>
and is, therefore, incompatible. </article>

Simon Roberts joined Sun Microsystems in time to teach Sun’s
first Java classes in the UK. He created the Sun Certified Java
Programmer and Sun Certified Java Developer exams. He wrote
several Java certification guides and is currently a freelance edu-
cator who teaches at many large companies in Silicon Valley and
around the world. He remains involved with Oracle’s Java certifica-
tion projects.

Understanding enums
Oracle Java tutorial on FileReader
Oracle Java tutorial on Streams and aggregate operations

learn more

Because this issue focuses on what’s inside Java, let’s look
at how Java renders user interface elements on Linux. At
the moment, the Linux version of the JRE depends in part
on the GIMP Toolkit (GTK+), a portable UI library written
in C. However, Java depends on GTK+ 2, a rather old ver-
sion of the library. JEP 283 proposes migration to GTK+ 3.
The benefit is that GTK+ 3 is the development branch (and
GTK+ 2 is no longer active). Another driver for this change
is a problem that could potentially arise, namely lack
of future support for GTK+ 2 in Linux distros. Currently,
most versions of Linux ship with both GTK+ 2 and 3.
However, because version 3 was launched in 2011, it’s not
clear how long the various distros will keep bundling
GTK+ 2. This enhancement proposal, therefore, explores
how support for version 3 could begin to be brought
into AWT/Swing, JavaFX, and potentially SWT. The JDK
Enhancement Proposal (JEP) document is particularly
interesting, because it presents a good overview of how
much work has to be done to make a comparatively small
change to a single component on a single platform. It
explains the benefits and drawbacks well, and it lays out
various transitional paths.

An earlier proposal, JEP 263, pointed to the benefits
of GTK+ 3 as a library to use for better support of high-
resolution displays.

If you’re interested in this topic and have expertise in
the matter, the Expert Committees welcome your input.

JEP 283 and JEP 263:
Migrating to GTK+ 3 on Linux

FEATURED JDK ENHANCEMENT PROPOSAL

//java proposals of interest /

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/tutorial/essential/io/charstreams.html
https://docs.oracle.com/javase/tutorial/collections/streams/index.html
http://www.gtk.org/
http://openjdk.java.net/jeps/283
http://openjdk.java.net/jeps/263

ORACLE.COM/JAVAMAGAZINE // MARCH/APRIL 2016

68

//contact us /

Comments
We welcome your comments, correc
tions, opinions on topics we’ve covered,
and any other thoughts you feel impor
tant to share with us or our readers.
Unless you specifically tell us that your
correspondence is private, we reserve
the right to publish it in our Letters to
the Editor section.

Article Proposals
We welcome article proposals on all
topics regarding Java and other JVM
languages, as well as the JVM itself.
We also are interested in proposals for
articles on Java utilities (either open
source or those bundled with the JDK).

Finally, algorithms, unusual but useful
programming techniques, and most other
topics that hardcore Java programmers
would enjoy are of great interest to us,
too. Please contact us with your ideas
at javamag_us@oracle.com and we’ll
give you our thoughts on the topic and
send you our nifty writer guidelines,
which will give you more information
on preparing an article.

Customer Service
If you’re having trouble with your
subscription, please contact the
folks at java@halldata.com (phone
+1.847.763.9635), who will do
whatever they can to help.

Where?
Comments and article proposals should
be sent to our editor, Andrew Binstock,
at javamag_us@oracle.com.

While it will have no influence on
our decision whether to publish your
article or letter, cookies and edible treats
will be gratefully accepted by our staff
at Java Magazine, Oracle Corporation,
500 Oracle Parkway, MS OPL 3A,
Redwood Shores, CA 94065, USA.

 Download area for code and
other items

 Java Magazine in Japanese

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
mailto:java%40halldata.com?subject=
mailto:javamag_us%40oracle.com?subject=
https://bitbucket.org/javamagazine/magdownloads/wiki/Home
http://www.oracle.com/technetwork/jp/articles/java/overview/index.html

	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

	
	JavaMag_MA16_cvr
	JavaMag_MA16_pg01
	JavaMag_MA16_pg03-04
	JavaMag_MA16_pg13
	JavaMag_MarApr2016_Working
	JavaMag_MA16_pg02
	JavaMag_MA16_pg06-07
	JavaMag_MA16_pg09-10
	JavaMag_MA16_pg11
	JavaMag_MA16_pg14-19
	JavaMag_MA16_pg20-23
	JavaMag_MA16_pg24-27
	JavaMag_MA16_pg28-33
	JavaMag_MA16_pg35-39
	JavaMag_MA16_pg40-44
	JavaMag_MA16_pg45-53
	JavaMag_MA16_pg54-62
	JavaMag_MA16_pg63-67
	JavaMag_MA16_pg68
	JavaMA16_Azule
	JavaMA16_JetBrainsAd
	JavaMA16_OraclePress
	JavaMA16_Zerotturaround

